aequationes mathematicae

, Volume 67, Issue 1, pp 188–194

Applications of Wilson’s functional equation

  • Pavlos Sinopoulos
Research paper

DOI: 10.1007/s00010-003-2704-8

Cite this article as:
Sinopoulos, P. Aequ. Math. (2004) 67: 188. doi:10.1007/s00010-003-2704-8
  • 35 Downloads

Summary.

We reduce the functional equation

\( f(x + y) - f(x - y) = \sum_{i=1}^{n} g_{i}(x)h_{i}(y) \)

for n = 1, 2, 3 to the matrix equation

\( E(x + y) + E(x - y) = [E(y) + E(-y)]E(x) \)

and we determine the general solutions for n = 2.

Mathematics Subject Classification (2000).

39B4239B5239B72.

Keywords.

Wilson’s functional equationVector-valued functionMatrix-valued functionAbelian group.

Copyright information

© Birkhäuser-Verlag 2004

Authors and Affiliations

  • Pavlos Sinopoulos
    • 1
    • 2
  1. 1.Department of MathematicsNational Technical University of AthensAthensGreece
  2. 2.AthensGreece