Skip to main content
Log in

A Gröbner-Bases Algorithm for the Computation of the Cohomology of Lie (Super) Algebras

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We present an effective algorithm for computing the standard cohomology spaces of finitely generated Lie (super) algebras over a field \({\mathbb{K}}\) of characteristic zero. In order to reach explicit representatives of some generators of the quotient space \({\fancyscript{Z}^ k /\fancyscript{B}^k}\) of cocycles \({\fancyscript{Z}^k}\) modulo coboundaries \({\fancyscript{B}^k}\) , we apply Gröbner bases techniques (in the appropriate linear setting) and take advantage of their strength. Moreover, when the considered Lie (super) algebras enjoy a grading — a case which often happens both in representation theory and in differential geometry—, all cohomology spaces \({\fancyscript{Z}^k /\fancyscript{B}^k}\) naturally split up as direct sums of smaller subspaces, and this enables us, for higher dimensional Lie (super) algebras, to improve the computer speed of calculations. Lastly, we implement our algorithm in the Maple software and evaluate its performances via some examples, most of which have several applications in the theory of Cartan-Tanaka connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aghasi, J. Merker, M. Sabzevari, Effective Cartan-Tanaka connections on strongly pseudoconvex hypersurfaces \({M^{3} \subset \mathbb{C}^{2}}\) . 113 pages, arxiv.org/abs/1104.1509

  2. Aghasi M., Merker J., Sabzevari M.: Connections de Cartan-Tanaka effectives pour les hypersurfaces strictement pseudoconvexes \({M^{3} \subset \mathbb{C}^{2}}\) de classe \({\fancyscript{C}^{6}}\) . C. R. Acad. Sci. Paris, Sr. I 349, 845–848 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. De Azcárraga J.A., Izquierdo J.M.: Lie Groups, Lie Algebras, Cohomology and some Applications in Physics, pp. 455. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  4. Becker T., Weispfenning V.: Gröbner Bases, A computational approach to commutative algebra, pp. 574. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  5. Beloshapka V.K., Ezhov V., Schmalz G.: Canonical Cartan connection and holomorphic invariants on Engel CR manifolds. Russian J. Mathematical Physics 14(2), 121–133 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. B. Buchberger, Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nuildimensionalen polynomideal. PhD thesis, Universität Innsbruck, 1965.

  7. Buchberger B.: An algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal. J. of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer Science: Interactions 41(3-4), 475–511 (2006)

    MathSciNet  MATH  Google Scholar 

  8. A. Čap, J. Slovak, Parabolic Geometries I. Background and general theory. Mathematical Surveys and Monographs, 154, American Math. Society, 2009, x+628 pp.

  9. D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics, Springer-Verlag, New York, third edition, 2007, 536 pp.

  10. Fuks D.B.: Cohomology of Infinite-Dimensional Lie Algebras, pp. 339. Plenum Publishing Corporation, New York (1986)

    MATH  Google Scholar 

  11. Goze M., Khakimdjanov Y.: Nilpotent Lie Algebras, pp. xvi+336. Mathematics and its Applications 361. Kluwer Academic Publishers Group, Dordrecht (1996)

    MATH  Google Scholar 

  12. P. Grozman, D. Leites, Mathematica aided study of Lie algebras and their cohomology. From supergravity to ballbearings and magnetic hydrodynamics, Proc. IMS’97.

  13. Khakimdjanov Y., Navarro R.M.: Deformations of filiform Lie algebras and superalgebras. J. Geometry and Physics 60, 1156–1169 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Kornyak V.K.: A program for computing the cohomology of Lie superalgebras of vector fields. J. Mathematical Sciences 108(6), 1004–1014 (2002)

    Article  MathSciNet  Google Scholar 

  15. Kornyak V.K.: A modular algorithm for computing cohomologies of Lie algebras and superalgebras. Programming and computer software 30(4), 157–163 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kostant B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Annals of Math. 74(2), 329–387 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Leites, G. Post, Cohomology to compute. Computers and Mathematics, E. Kaltofen and S. M. Watt (eds.), Springer-Verlag, New York (1989), 73–81.

  18. S. Lipschutz, M. Lipson, Linear Algebra. 4th ed. Schaum’s Outline Series (McGraw-Hill Book Company, 2009).

  19. J. Merker, M. Sabzevari, Canonical Cartan connection for nondegenerate cubic five-dimensional generic submanifolds of CR dimension one in \({\mathbb{C}^4}\) . In progress.

  20. G. Post, N. Von Hijligenberg, Calculations of Lie algebra cohomology by computer. Memo# 833, Faculty Appl. Math. Univ. Twente 1989; id. ibid. # 928 1991.

  21. Tanaka N.: On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ 10, 1–82 (1970)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Merker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghasi, M., M.-Alizadeh, B., Merker, J. et al. A Gröbner-Bases Algorithm for the Computation of the Cohomology of Lie (Super) Algebras. Adv. Appl. Clifford Algebras 22, 911–937 (2012). https://doi.org/10.1007/s00006-011-0319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-011-0319-z

Keywords

Navigation