Skip to main content

Advertisement

Log in

Platelets in Inflammation and Immune Modulations: Functions Beyond Hemostasis

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Platelets play central roles for maintaining the homeostasis of the blood coagulation. As they are also involved in immune responses and host defenses, increasing evidences have suggested that platelets exert other roles beyond their well-recognized function in preventing bleeding. This review is focused on inflammation, allergy and immune modulations of platelets. Platelets conduct immunoregulation through secretion of functional mediators, interaction with various immune cells, endothelial cells and beneficial for the leukocyte infiltration to inflamed/allergic tissues. In these regulations, the leukocytes are influenced by and receiving the signals from platelets. In contrast, rare attentions were focused on platelet regulations by immune system. An intriguingly example in the intravenous immunoglobulin (IVIg) treatment is discussed, in which dendritic cells exert anti-inflammatory effect through platelets. This further suggests that coagulant and immune systems are tightly associated rather than separate entities. The cross-talks between these two systems implicate that platelet therapy may have application beyond thrombosis, and immune interventions may have potentials to treat thrombosis diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ITP:

Immune thrombocytopenia

IVIg:

Intravenous immunoglobulin

DCs:

Dendritic cells

CD40L:

CD40-ligand

FcεR:

Immunoglobulin E Fc receptor

FcγR:

Immunoglobulin G Fc receptor

References

  • Akilesh S, Petkova S, Sproule TJ et al (2004) The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J Clin Invest 113:1328–1333

    PubMed  CAS  Google Scholar 

  • Aslam R, Speck ER, Kim M et al (2006) Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood 107:637–641

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  • Barnes PJ (1987) Inflammatory mediator receptors and asthma. Am Rev Respir Dis 135:S26–S31

    PubMed  CAS  Google Scholar 

  • Basta M, Dalakas MC (1994) High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J Clin Invest 94:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Benton AS, Kumar N, Lerner J et al (2010) Airway platelet activation is associated with airway eosinophilic inflammation in asthma. J Investig Med 58:987–990

    PubMed  Google Scholar 

  • Boilard E, Nigrovic PA, Larabee K et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583

    Article  PubMed  CAS  Google Scholar 

  • Bonfanti R, Furie BC, Furie B et al (1989) PADGEM (GMP140) is a component of Weibel–Palade bodies of human endothelial cells. Blood 73:1109–1112

    PubMed  CAS  Google Scholar 

  • Braun-Moscovici Y, Furst DE (2003) Immunoglobulin for rheumatic diseases in the twenty-first century: take it or leave it? Curr Opin Rheumatol 15:237–245

    Article  PubMed  Google Scholar 

  • Bruhns P, Samuelsson A, Pollard JW et al (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18:573–581

    Article  PubMed  CAS  Google Scholar 

  • Bussolino F, Camussi G (1995) Platelet-activating factor produced by endothelial cells. A molecule with autocrine and paracrine properties. Eur J Biochem 229:327–337

    Article  PubMed  CAS  Google Scholar 

  • Capron M, Jouault T, Prin L et al (1986) Functional study of a monoclonal antibody to IgE Fc receptor (Fc epsilon R2) of eosinophils, platelets, and macrophages. J Exp Med 164:72–89

    Article  PubMed  CAS  Google Scholar 

  • Catani L, Fagioli ME, Tazzari PL et al (2006) Dendritic cells of immune thrombocytopenic purpura (ITP) show increased capacity to present apoptotic platelets to T lymphocytes. Exp Hematol 34:879–887

    Article  PubMed  CAS  Google Scholar 

  • Chang HH, Lo SJ (1998) Full-spreading platelets induced by the recombinant rhodostomin are via binding to integrins and correlated with FAK phosphorylation. Toxicon 36:1087–1099

    Article  PubMed  CAS  Google Scholar 

  • Chang, WK, Sun, DS, Chan, H et al. (2012) Visible light responsive core-shell structured In2O3@CaIn2O4 photocatalyst with superior bactericidal property and biocompatibility. Nanomedicine-NBM 8:609–617

    Google Scholar 

  • Chang HH, Hu ST, Huang TF et al (1993) Rhodostomin, an RGD-containing peptide expressed from a synthetic gene in Escherichia coli, facilitates the attachment of human hepatoma cells. Biochem Biophys Res Commun 190:242–249

    Article  PubMed  CAS  Google Scholar 

  • Chang HH, Tsai WJ, Lo SJ (1997) Glutathione S-transferase-rhodostomin fusion protein inhibits platelet aggregation and induces platelet shape change. Toxicon 35:195–204

    Article  PubMed  CAS  Google Scholar 

  • Chang HH, Lin CH, Lo SJ (1999) Recombinant rhodostomin substrates induce transformation and active calcium oscillation in human platelets. Exp Cell Res 250:387–400

    Article  PubMed  CAS  Google Scholar 

  • Chang CP, Chang JC, Chang HH et al (2001) Positional importance of Pro53 adjacent to the Arg49-Gly50-Asp51 sequence of rhodostomin in binding to integrin alphaIIbbeta3. Biochem J 357:57–64

    Article  PubMed  CAS  Google Scholar 

  • Chang HH, Shyu HF, Wang YM et al (2002) Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen. J Infect Dis 186:743–751

    Article  PubMed  CAS  Google Scholar 

  • Chang JC, Chang HH, Lin CT et al (2005) The integrin alpha6beta1 modulation of PI3 K and Cdc42 activities induces dynamic filopodium formation in human platelets. J Biomed Sci 12:867–884

    Google Scholar 

  • Cines DB, McMillan R (2005) Management of adult idiopathic thrombocytopenic purpura. Annu Rev Med 56:425–442

    Article  PubMed  CAS  Google Scholar 

  • Clark SR, Ma AC, Tavener SA et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13:463–469

    Article  PubMed  CAS  Google Scholar 

  • Clynes R (2005) Immune complexes as therapy for autoimmunity. J Clin Invest 115:25–27

    PubMed  CAS  Google Scholar 

  • Corrigall VM, Vittecoq O, Panayi GS (2009) Binding immunoglobulin protein-treated peripheral blood monocyte-derived dendritic cells are refractory to maturation and induce regulatory T-cell development. Immunology 128:218–226

    Article  PubMed  CAS  Google Scholar 

  • Coyle AJ, Page CP, Atkinson L et al (1990) The requirement for platelets in allergen-induced late asthmatic airway obstruction. Eosinophil infiltration and heightened airway responsiveness in allergic rabbits. Am Rev Respir Dis 142:587–593

    Article  PubMed  CAS  Google Scholar 

  • Crow AR, Lazarus AH (2008) The mechanisms of action of intravenous immunoglobulin and polyclonal anti-d immunoglobulin in the amelioration of immune thrombocytopenic purpura: what do we really know? Transfus Med Rev 22:103–116

    Article  PubMed  Google Scholar 

  • Czapiga M, Kirk AD, Lekstrom-Himes J (2004) Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp Hematol 32:135–139

    Article  PubMed  CAS  Google Scholar 

  • Danese S, Fiocchi C (2005) Platelet activation and the CD40/CD40 ligand pathway: mechanisms and implications for human disease. Crit Rev Immunol 25:103–121

    Article  PubMed  CAS  Google Scholar 

  • Danese S, de la Motte C, Sturm A et al (2003) Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology 124:1249–1264

    Article  PubMed  CAS  Google Scholar 

  • Davis GL (1998) Introduction to platelet update. Clin Lab Sci 11:355

    PubMed  CAS  Google Scholar 

  • Diacovo TG, Puri KD, Warnock RA et al (1996) Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273:252–255

    Article  PubMed  CAS  Google Scholar 

  • Diacovo TG, Catalina MD, Siegelman MH et al (1998) Circulating activated platelets reconstitute lymphocyte homing and immunity in L-selectin-deficient mice. J Exp Med 187:197–204

    Article  PubMed  CAS  Google Scholar 

  • Edenius C, Stenke L, Lindgren JA (1991) On the mechanism of transcellular lipoxin formation in human platelets and granulocytes. Eur J Biochem 199:401–409

    Article  PubMed  CAS  Google Scholar 

  • Elzey BD, Tian J, Jensen RJ et al (2003) Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity 19:9–19

    Article  PubMed  CAS  Google Scholar 

  • Elzey BD, Grant JF, Sinn HW et al (2005) Cooperation between platelet-derived CD154 and CD4+ T cells for enhanced germinal center formation. J Leukoc Biol 78:80–84

    Article  PubMed  CAS  Google Scholar 

  • Elzey BD, Ratliff TL, Sowa JM et al (2011) Platelet CD40L at the interface of adaptive immunity. Thromb Res 127:180–183

    Article  PubMed  CAS  Google Scholar 

  • Ephrem A, Misra N, Hassan G et al (2005) Immunomodulation of autoimmune and inflammatory diseases with intravenous immunoglobulin. Clin Exp Med 5:135–140

    Article  PubMed  CAS  Google Scholar 

  • Fagerstam JP, Whiss PA, Strom M et al (2000) Expression of platelet P-selectin and detection of soluble P-selectin, NPY and RANTES in patients with inflammatory bowel disease. Inflamm Res 49:466–472

    Article  PubMed  CAS  Google Scholar 

  • Funa K, Ahgren A (1997) Characterization of platelet-derived growth factor (PDGF) action on a mouse neuroblastoma cell line, NB41, by introduction of an antisense PDGF beta-receptor RNA. Cell Growth Differ 8:861–869

    PubMed  CAS  Google Scholar 

  • Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13:114–119

    Article  PubMed  CAS  Google Scholar 

  • Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115:3378–3384

    Article  PubMed  CAS  Google Scholar 

  • Gill V, Doig C, Knight D et al (2005) Targeting adhesion molecules as a potential mechanism of action for intravenous immunoglobulin. Circulation 112:2031–2039

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez H, Khademi M, Andersson M et al (2004) Prior poliomyelitis-IVIg treatment reduces proinflammatory cytokine production. J Neuroimmunol 150:139–144

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa S, Pawankar R, Suzuki K et al (1999) Functional expression of the high affinity receptor for IgE (FcepsilonRI) in human platelets and its’ intracellular expression in human megakaryocytes. Blood 93:2543–2551

    PubMed  CAS  Google Scholar 

  • Hogan SP (2007) Recent advances in eosinophil biology. Int Arch Allergy Immunol 143(Suppl 1):3–14

    Article  PubMed  Google Scholar 

  • Huang HS, Sun DS, Lien TS et al (2010) Dendritic cells modulate platelet activity in IVIg-mediated amelioration of ITP in mice. Blood 116:5002–5009

    Article  PubMed  CAS  Google Scholar 

  • Huo Y, Schober A, Forlow SB et al (2003) Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 9:61–67

    Article  PubMed  CAS  Google Scholar 

  • Imbach P, Morell A (1989) Idiopathic thrombocytopenic purpura (ITP): immunomodulation by intravenous immunoglobulin (IVIg). Int Rev Immunol 5:181–188

    Article  PubMed  CAS  Google Scholar 

  • Johansson D, Shannon O, Rasmussen M (2011) Platelet and neutrophil responses to gram positive pathogens in patients with bacteremic infection. PLoS ONE 6:e26928

    Article  PubMed  CAS  Google Scholar 

  • Joseph A (1999) The role of platelets and platelet glycoprotein IIb/IIIa receptor inhibition in acute coronary syndromes: an educational supplement. Introduction. J Emerg Med 17:565

    Article  PubMed  CAS  Google Scholar 

  • Joseph M, Gounni AS, Kusnierz JP et al (1997) Expression and functions of the high-affinity IgE receptor on human platelets and megakaryocyte precursors. Eur J Immunol 27:2212–2218

    Article  PubMed  CAS  Google Scholar 

  • Kantarci A, Van Dyke TE (2003) Lipoxins in chronic inflammation. Crit Rev Oral Biol Med 14:4–12

    Article  PubMed  Google Scholar 

  • Kasperska-Zajac A, Rogala B (2006) Platelet function in anaphylaxis. J Investig Allergol Clin Immunol 16:1–4

    PubMed  CAS  Google Scholar 

  • Kasperska-Zajac A, Rogala B (2007) Platelet activation during allergic inflammation. Inflammation 30:161–166

    Article  PubMed  CAS  Google Scholar 

  • Kasperska-Zajac A, Brzoza Z, Rogala B (2008) Seasonal changes in platelet activity in pollen-induced seasonal allergic rhinitis and asthma. J Asthma 45:485–487

    Article  PubMed  CAS  Google Scholar 

  • Katoh N (2009) Platelets as versatile regulators of cutaneous inflammation. J Dermatol Sci 53:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kau JH, Sun DS, Tsai WJ et al (2005) Antiplatelet activities of anthrax lethal toxin are associated with suppressed p42/44 and p38 mitogen-activated protein kinase pathways in the platelets. J Infect Dis 192:1465–1474

    Article  PubMed  CAS  Google Scholar 

  • Kau JH, Sun DS, Huang HS et al (2010) Sublethal doses of anthrax lethal toxin on the suppression of macrophage phagocytosis. PLoS ONE 5:e14289

    Article  PubMed  CAS  Google Scholar 

  • Kazatchkine MD, Kaveri SV (2001) Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 345:747–755

    Article  PubMed  CAS  Google Scholar 

  • Kemona-Chetnik I, Bodzenta-Lukaszyk A, Butkiewicz A et al (2007) Thrombocytopoesis in allergic asthma. Pol Arch Med Wewn 117:9–13

    PubMed  CAS  Google Scholar 

  • Klinger MH, Jelkmann W (2002) Role of blood platelets in infection and inflammation. J Interferon Cytokine Res 22:913–922

    Article  PubMed  CAS  Google Scholar 

  • Koenen RR, Weber C (2010) Platelet-derived chemokines in vascular remodeling and atherosclerosis. Semin Thromb Hemost 36:163–169

    Article  PubMed  CAS  Google Scholar 

  • Kowal K, Pampuch A, Kowal-Bielecka O et al (2006) Platelet activation in allergic asthma patients during allergen challenge with Dermatophagoides pteronyssinus. Clin Exp Allergy 36:426–432

    Article  PubMed  CAS  Google Scholar 

  • Kumar RA, Dong JF, Thaggard JA et al (2003) Kinetics of GPIbalpha-vWF-A1 tether bond under flow: effect of GPIbalpha mutations on the association and dissociation rates. Biophys J 85:4099–4109

    Article  PubMed  CAS  Google Scholar 

  • Larsen E, Celi A, Gilbert GE et al (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 59:305–312

    Article  PubMed  CAS  Google Scholar 

  • Lazarus AH (2010) IVIg conducts DC-platelet nuptials. Blood 116:4740–4741

    Article  PubMed  CAS  Google Scholar 

  • Leslie M (2010) Cell biology. Beyond clotting: the powers of platelets. Science 328:562–564

    Article  PubMed  CAS  Google Scholar 

  • Levy Y, Sherer Y, Ahmed A et al (1998) Autoantibody level modification in adult patients with idiopathic thrombocytopenic purpura following intravenous immunoglobulin treatment. Nat Immun 16:207–214

    Article  PubMed  CAS  Google Scholar 

  • Li N (2008) Platelet-lymphocyte cross-talk. J Leukoc Biol 83:1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Li G, Kim YJ, Mantel C et al (2003) P-selectin enhances generation of CD14+ CD16+ dendritic-like cells and inhibits macrophage maturation from human peripheral blood monocytes. J Immunol 171:669–677

    PubMed  CAS  Google Scholar 

  • Lo SJ, Chang HH (2005) Recombinant snake disintegrins used for mammalian integrin study. Toxin Rev 24:95–111

    Article  CAS  Google Scholar 

  • May AE, Langer H, Seizer P et al (2007) Platelet–leukocyte interactions in inflammation and atherothrombosis. Semin Thromb Hemost 33:123–127

    Article  PubMed  CAS  Google Scholar 

  • Mazzarello P, Calligaro AL, Calligaro A (2001) Giulio Bizzozero: a pioneer of cell biology. Nat Rev Mol Cell Biol 2:776–781

    Article  PubMed  CAS  Google Scholar 

  • McGregor L, Martin J, McGregor JL (2006) Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis. Front Biosci 11:830–837

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343:338–344

    Article  PubMed  CAS  Google Scholar 

  • Michelson AD (2007) Platelets. California Academic Press, New York

    Google Scholar 

  • Nojima S (1991) Platelet-activating factor (PAF): an introduction. Lipids 26:965–966

    Article  PubMed  CAS  Google Scholar 

  • Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33

    Article  PubMed  CAS  Google Scholar 

  • Pashov A, Bellon B, Kaveri SV et al (1997) A shift in encephalitogenic T cell cytokine pattern is associated with suppression of EAE by intravenous immunoglobulins (IVIg). Mult Scler 3:153–156

    Article  PubMed  CAS  Google Scholar 

  • Passacquale G, Vamadevan P, Pereira L et al (2011) Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS ONE 6:e25595

    Article  PubMed  CAS  Google Scholar 

  • Pitchford SC (2007) Defining a role for platelets in allergic inflammation. Biochem Soc Trans 35:1104–1108

    Article  PubMed  CAS  Google Scholar 

  • Pitchford SC, Riffo-Vasquez Y, Sousa A et al (2004) Platelets are necessary for airway wall remodeling in a murine model of chronic allergic inflammation. Blood 103:639–647

    Article  PubMed  CAS  Google Scholar 

  • Pitchford SC, Momi S, Giannini S et al (2005) Platelet P-selectin is required for pulmonary eosinophil and lymphocyte recruitment in a murine model of allergic inflammation. Blood 105:2074–2081

    Article  PubMed  CAS  Google Scholar 

  • Pitchford SC, Momi S, Baglioni S et al (2008) Allergen induces the migration of platelets to lung tissue in allergic asthma. Am J Respir Crit Care Med 177:604–612

    Article  PubMed  CAS  Google Scholar 

  • Provan D, Stasi R, Newland AC et al (2010) International consensus report on the investigation and management of primary immune thrombocytopenia. Blood 115:168–186

    Article  PubMed  CAS  Google Scholar 

  • Pugh N, Simpson AM, Smethurst PA et al (2010) Synergism between platelet collagen receptors defined using receptor-specific collagen-mimetic peptide substrata in flowing blood. Blood 115:5069–5079

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Crivellato E (2007) Giulio Bizzozero and the discovery of platelets. Leuk Res 31:1339–1341

    Article  PubMed  CAS  Google Scholar 

  • Rodeghiero F, Stasi R, Gernsheimer T et al (2009) Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood 113:2386–2393

    Article  PubMed  CAS  Google Scholar 

  • Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8:1227–1234

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291:484–486

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Sody M, Gottschalk O, Metz P et al (2007a) Endothelial iNOS versus platelet iNOS: responsibility for the platelet/leukocyte endothelial cell interaction in murine antigen induced arthritis in vivo. Inflamm Res 56:262–268

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Sody M, Metz P, Gottschalk O et al (2007b) Platelet P-selectin is significantly involved in leukocyte–endothelial cell interaction in murine antigen-induced arthritis. Platelets 18:365–372

    Article  PubMed  CAS  Google Scholar 

  • Semple JW, Freedman J (2010) Platelets and innate immunity. Cell Mol Life Sci 67:499–511

    Article  PubMed  CAS  Google Scholar 

  • Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11:264–274

    Article  PubMed  CAS  Google Scholar 

  • Siragam V, Crow AR, Brinc D et al (2006) Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 12:688–692

    Article  PubMed  CAS  Google Scholar 

  • Sprague DL, Sowa JM, Elzey BD et al (2007) The role of platelet CD154 in the modulation in adaptive immunity. Immunol Res 39:185–193

    Article  PubMed  CAS  Google Scholar 

  • Sprague DL, Elzey BD, Crist SA et al (2008) Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood 111:5028–5036

    Article  PubMed  CAS  Google Scholar 

  • Stenberg PE, McEver RP, Shuman MA et al (1985) A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 101:880–886

    Article  PubMed  CAS  Google Scholar 

  • Sun DS, Lo SJ, Lin CH et al (2005a) Calcium oscillation and phosphatidylinositol 3-kinase positively regulate integrin alpha(IIb)beta3-mediated outside-in signaling. J Biomed Sci 12:321–333

    Article  PubMed  CAS  Google Scholar 

  • Sun DS, Lo SJ, Tsai WJ et al (2005b) PI3-kinase is essential for ADP-stimulated integrin alpha(IIb)beta3-mediated platelet calcium oscillation, implications for P2Y receptor pathways in integrin alpha(IIb)beta3-initiated signaling cross-talks. J Biomed Sci 12:937–948

    Article  PubMed  CAS  Google Scholar 

  • Sun DS, King CC, Huang HS et al (2007) Antiplatelet autoantibodies elicited by dengue virus non-structural protein 1 cause thrombocytopenia and mortality in mice. J Thromb Haemost 5:2291–2299

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Wang X, Degen JL et al (2009) Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood 113:1358–1364

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Kimura T, Kitaichi K et al (2002) Platelet factor 4 fragment induces histamine release from rat peritoneal mast cells. Peptides 23:1713–1717

    Article  PubMed  CAS  Google Scholar 

  • Svensson Holm AC, Bengtsson T, Grenegard M et al (2008) Platelets stimulate airway smooth muscle cell proliferation through mechanisms involving 5-lipoxygenase and reactive oxygen species. Platelets 19:528–536

    Article  PubMed  CAS  Google Scholar 

  • Svensson Holm AC, Bengtsson T, Grenegard M et al (2011) Platelet membranes induce airway smooth muscle cell proliferation. Platelets 22:43–53

    Article  CAS  Google Scholar 

  • Tamagawa-Mineoka R, Katoh N, Ueda E et al (2007) The role of platelets in leukocyte recruitment in chronic contact hypersensitivity induced by repeated elicitation. Am J Pathol 170:2019–2029

    Article  PubMed  CAS  Google Scholar 

  • Totani L, Evangelista V (2010) Platelet-leukocyte interactions in cardiovascular disease and beyond. Arterioscler Thromb Vasc Biol 30:2357–2361

    Article  PubMed  CAS  Google Scholar 

  • Vargaftig BB, Conard J, Samama M (1979) Blood coagulation and platelet function: introduction. Pharmacol Ther B 5:225–227

    Article  PubMed  CAS  Google Scholar 

  • Varga-Szabo D, Pleines I, Nieswandt B (2008) Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28:403–412

    Article  PubMed  CAS  Google Scholar 

  • Vieira-de-Abreu, A, Campbell, RA, Weyrich, AS et al. (2011) Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol

  • von Hundelshausen P, Weber C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100:27–40

    Article  CAS  Google Scholar 

  • Watanabe O, Natori K, Tamari M et al (1999) Significantly elevated expression of PF4 (platelet factor 4) and eotaxin in the NOA mouse, a model for atopic dermatitis. J Hum Genet 44:173–176

    Article  PubMed  CAS  Google Scholar 

  • Weyrich AS, Zimmerman GA (2004) Platelets: signaling cells in the immune continuum. Trends Immunol 25:489–495

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Ikeda H, Haramaki N et al (2005) Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates. J Am Coll Cardiol 45:1280–1286

    Article  PubMed  CAS  Google Scholar 

  • Zander DM, Klinger M (2009) The blood platelets contribution to innate host defense—what they have learned from their big brothers. Biotechnol J 4:914–926

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Council of Taiwan ROC under Grant No. 98-2320-B-320-004 MY3, and Tzu-Chi University under Grant No. TCIRP 95002-02, TCIRP 96004-01, TCIRP 98001-01, TCRPP 99020 and TCRPP100003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Hou Chang.

About this article

Cite this article

Huang, HS., Chang, HH. Platelets in Inflammation and Immune Modulations: Functions Beyond Hemostasis. Arch. Immunol. Ther. Exp. 60, 443–451 (2012). https://doi.org/10.1007/s00005-012-0193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0193-y

Keywords

Navigation