, Volume 13, Issue 4, pp 188-198

Effects of long-term CO2 enrichment and nutrient availability in Norway spruce. I. Phenology and morphology of branches

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

 Branches of 30-year-old Norway spruce [Picea abies (L.) Karst.] trees were enclosed in ventilated, transparent plastic bags and flushed with air containing ambient (A≈370 μmol CO2 mol–1) or ambient plus 340 μmol CO2 mol–1 (EL). Light-saturated photosynthesis was on average 56% higher in EL compared to A. Branch phenology and morphology were strongly related to nitrogen concentration (mg g–1 dry mass) in the foliage and to elevated temperatures in the bags, but no direct effect of EL was found. In 1995, budbreak occurred on average 4 days earlier in the bags compared to the control branches, which was partly explained by the temperature elevation in the bags. No nutrient or EL effect on budbreak was found. Increases in temperature and nitrogen supply increased shoot growth: together they explained 76% of the variation in the extension rate, 63% of the variation in extension duration and 65% of the variation in final length of leading shoots. Shoot morphology was altered both by increased nitrogen availability and by the enclosure induced environmental changes inside the bags, leading to reduced mutual shading between needles. Specific needle area (SNA) was lower in EL, but this was related to lower nitrogen concentrations. Total dry mass of the branches was unaffected by EL. It is concluded that treating individual branches of Norway spruce with elevated CO2 does not increase branch growth. The nutrient status of the branch and climate determine its growth, i.e. its sink strength for carbon. Increased export of carbohydrates to the rest of the tree is probable in EL treated branches.
Received: 20 July 1998 / Accepted 8 October 1998