Discrete & Computational Geometry

, Volume 22, Issue 4, pp 481–504

Surface Reconstruction by Voronoi Filtering

  • N. Amenta
  • M. Bern

DOI: 10.1007/PL00009475

Cite this article as:
Amenta, N. & Bern, M. Discrete Comput Geom (1999) 22: 481. doi:10.1007/PL00009475

Abstract.

We give a simple combinatorial algorithm that computes a piecewise-linear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled surfaces, where density depends on a local feature size function, the output is topologically valid and convergent (both pointwise and in surface normals) to the original surface. We briefly describe an implementation of the algorithm and show example outputs.

Copyright information

© 1998 Springer-Verlag New York Inc.

Authors and Affiliations

  • N. Amenta
    • 1
  • M. Bern
    • 2
  1. 1.Computer Sciences, University of Texas, Austin, TX 78712, USA amenta@cs.utexas.edu US
  2. 2.Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304, USA bern@parc.xerox.comUS