Discrete & Computational Geometry

, Volume 22, Issue 3, pp 377–402

Finding the Shortest Watchman Route in a Simple Polygon

  • S. Carlsson
  • H. Jonsson
  • B. J. Nilsson

DOI: 10.1007/PL00009467

Cite this article as:
Carlsson, S., Jonsson, H. & Nilsson, B. Discrete Comput Geom (1999) 22: 377. doi:10.1007/PL00009467

Abstract.

We present the first polynomial time algorithm that finds the shortest route in a simple polygon such that all points of the polygon are visible from the route. This route is called the shortest watchman route, and we do not assume any restrictions on the route or on the simple polygon. Our algorithm runs in worst case O(n6) time, but it is adaptive, making it run faster on polygons with a simple structure.

Copyright information

© 1998 Springer-Verlag New York Inc.

Authors and Affiliations

  • S. Carlsson
    • 1
  • H. Jonsson
    • 1
  • B. J. Nilsson
    • 2
  1. 1.Department of Computer Science, Luleå University of Technology, 971 87 Luleå, Sweden, Svante.Carlsson@sm.luth.se, Hakan.Jonsson@sm.luth.seSE
  2. 2.Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden Bengt.Nilsson.lth.seSE