Discrete & Computational Geometry

, Volume 19, Issue 1, pp 105–130

On Functional Separately Convex Hulls

  • J. Matoušek
  • P. Plecháč

DOI: 10.1007/PL00009331

Cite this article as:
Matoušek, J. & Plecháč, P. Discrete Comput Geom (1998) 19: 105. doi:10.1007/PL00009331


Let D be a set of vectors in Rd . A function f:RdR is called D-convex if its restriction to each line parallel to a nonzero vector of D is a convex function. For a set A⊆Rd , the functional D-convex hull of A, denoted by coD(A) , is the intersection of the zero sets of all nonnegative D -convex functions that are 0 on A .

We prove some results concerning the structure of functional D -convex hulls, e.g., a Krein—Milman-type theorem and a result on separation of connected components.

We give a polynomial-time algorithm for computing coD(A) for a finite point set A (in any fixed dimension) in the case of D being a basis of Rd (the case of separate convexity).

This research is primarily motivated by questions concerning the so-called rank-one convexity, which is a particular case of D -convexity and is important in the theory of systems of nonlinear partial differential equations and in mathematical modeling of microstructures in solids. As a direct contribution to the study of rank-one convexity, we construct a configuration of 20 symmetric 2 x 2 matrices in a general (stable) position with a nontrivial functionally rank-one convex hull (answering a question of K. Zhang on the existence of higher-dimensional nontrivial configurations of points and matrices).

Copyright information

© 1998 Springer-Verlag New York Inc.

Authors and Affiliations

  • J. Matoušek
    • 1
  • P. Plecháč
    • 2
  1. 1.Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic matousek@kam.mff.cuni.czCZ
  2. 2.Department of Mathematics, Heriot—Watt University, Edinburgh EH14 4AS, Scotland petr@ma.hw.ac.uk UK

Personalised recommendations