, Volume 48, Issue 3, pp 369-379

Multiple Substitutions Affect the Phylogenetic Utility of Cytochrome b and 12S rDNA Data: Examining a Rapid Radiation in Leporid (Lagomorpha) Evolution

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract.

Partial sequences of two mitochondrial genes, the 12S ribosomal gene (739 bp) and the cytochrome b gene (672 bp), were analyzed in hopes of reconstructing the evolutionary relationships of 11 leporid species, representative of seven genera. However, partial cytochrome b sequences were of little phylogenetic value in this study. A suite of pairwise comparisons between taxa revealed that at the intergeneric level, the cytochrome b gene is saturated at synonymous coding positions due to multiple substitution events. Furthermore, variation at the nonsynonymous positions is limited, rendering the cytochrome b gene of little phylogenetic value for assessing the relationships between leporid genera. If the cytochrome b data are analyzed without accounting for these two classes of nucleotides (i.e., synonymous and nonsynonymous sites), one may incorrectly conclude that signal exists in the cytochrome b data. The mitochondrial 12S rRNA gene, on the other hand, has not experienced excessive saturation at either stem or loop positions. Phylogenies reconstructed from the 12S rDNA data support hypotheses based on fossil evidence that African rock rabbits (Pronolagus) are outside of the main leporid stock and that leporids experienced a rapid radiation. However, the molecular data suggest that this radiation event occurred in the mid-Miocene several millions of years earlier than the Pleistocene dates suggested by paleontological evidence.

Received: 23 April 1998 / Accepted: 14 May 1998