, Volume 47, Issue 4, pp 378-384

Directionally Evolving Genetic Code: The UGA Codon from Stop to Tryptophan in Mitochondria

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


For the comprehensive analyses of deviant codes in protistan mitochondria (mt), we sequenced about a 1.1-kb region of a mitochondrial (mt) gene, the cytochrome c oxidase subunit I (coxI) in two chlorarachniophytes, the filose amoeba Euglypha rotunda, the cryptomonad Cryptomonas ovata, the prymnesiophyte (haptophyte) Diacronema vlkianum (Pavlovales), and the diatom Melosira ambigua. As a result of this analysis, we noticed that the UGA codon is assigned to tryptophan (Trp) instead of being a signal for translational termination in two chlorarachniophytes and in E. rotunda. The same type of deviant code was reported previously in animals, fungi, ciliates, kinetoplastids, Chondrus crispus (a red alga), Acanthamoeba castellanii (an amoeboid protozoon), and three of the four prymnesiophyte orders with the exception of the Pavlovales. A phylogenetic analysis based on the COXI sequences of 56 eukaryotes indicated that the organisms bearing the modified code, UGA for Trp, are not monophyletic. Based on these studies, we propose that the ancestral mitochondrion was bearing the universal genetic code and subsequently reassigned the codon to Trp independently, at least in the lineage of ciliates, kinetoplastids, rhodophytes, prymnesiophytes, and fungi. We also discuss how this codon was directionally captured by Trp tRNA.