, Volume 236, Issue 4, pp 779-786

Multi-hypercyclic operators are hypercyclic

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Herrero conjectured in 1991 that every multi-hypercyclic (respectively, multi-supercyclic) operator on a Hilbert space is in fact hypercyclic (respectively, supercyclic). In this article we settle this conjecture in the affirmative even for continuous linear operators defined on arbitrary locally convex spaces. More precisely, we show that, if \(T:E \rightarrow E\) is a continuous linear operator on a locally convex space E such that there is a finite collection of orbits of T satisfying that each element in E can be arbitrarily approximated by a vector of one of these orbits, then there is a single orbit dense in E. We also prove the corresponding result for a weaker notion of approximation, called supercyclicity .

Received October 18, 1999 / Published online February 5, 2001