, Volume 236, Issue 2, pp 251-290

Homology stability for classical regular semisimple varieties

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We use techniques from homotopy theory, in particular the connection between configuration spaces and iterated loop spaces, to give geometric explanations of stability results for the cohomology of the varieties of regular semisimple elements in the simple complex Lie algebras of classical type A, B or C, as well as in the group \(GL_n({\Bbb C})\) . We show that the cohomology spaces of stable versions of these varieties have an algebraic stucture, which identifies them as “free Poisson algebras” with suitable degree shifts. Using this, we are able to give explicit formulae for the corresponding Poincaré series, which lead to power series identities by comparison with earlier work. The cases of type B and C involve ideas from equivariant homotopy theory. Our results may be interpreted in terms of the actions of a Weyl group on its coinvariant algebra (i.e. the coordinate ring of the affine space on which it acts, modulo the invariants of positive degree; this space coincides with the cohomology ring of the flag variety of the associated Lie group) and on the cohomology of its associated complex discriminant variety.

Received August 31, 1998; in final form August 1, 1999 / Published online October 30, 2000