Mathematische Zeitschrift

, Volume 232, Issue 1, pp 103–135

Algebraic varieties on which the classical Phragmén-Lindelöf estimates hold for plurisubharmonic functions

  • Rüdiger W. Braun
  • Reinhold Meise
  • B.A. Taylor
Original article

DOI: 10.1007/PL00004756

Cite this article as:
Braun, R., Meise, R. & Taylor, B. Math Z (1999) 232: 103. doi:10.1007/PL00004756

Abstract.

Algebraic varieties V are investigated on which the natural analogue of the classical Phragmén-Lindelöf principle for plurisubharmonic functions holds. For a homogeneous polynomial P in three variables it is shown that its graph has this property if and only if P has real coefficients, no elliptic factors, is locally hyperbolic in all real characteristics, and the localizations in these characteristics are square-free. The last condition is shown to be necessary in any dimension.

Mathematics Subject Classification (1991):Primary 32F05, 31C10 

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Rüdiger W. Braun
    • 1
  • Reinhold Meise
    • 1
  • B.A. Taylor
    • 2
  1. 1.Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany (e-mail: braun@cs.uni-duesseldorf.de / meise@cs.uni-duesseldorf.de) DE
  2. 2.Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA (e-mail: taylor@umich.edu) US