Mathematische Zeitschrift

, Volume 223, Issue 3, pp 367–385

Reduced models of Albert algebras


DOI: 10.1007/PL00004273

Cite this article as:
Petersson, H.P. & Racine, M.L. Math Z (1996) 223: 367. doi:10.1007/PL00004273


We prove existence and uniqueness of reduced models for arbitrary Albert algebras and relate them to the Tits process. This relationship yields explicit noncohomological realizations of the invariants mod 2 due to Serre and Rost. We also construct nontrivial examples of Albert division algebras with nonvanishing invariants mod 2.

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  1. 1.Fachbereich MathematikFernUniversitätHagenDeutschland
  2. 2.Department of MathematicsUniversity of OttawaOttawaCanada