Geometric & Functional Analysis GAFA

, Volume 7, Issue 2, pp 215–244

Laminations, trees, and irreducible automorphisms of free groups

Authors

  • M. Bestvina
    • Mladen Bestvina, Dept. of Math., University of Utah, Salt Lake City, UT 84112, USA e-mail: bestvina@math.utah.edu
  • M. Feighn
    • Mark Feighn, Dept. of Math., Rutgers University, Newark, NJ 07102, USA e-mail: feighn@andromeda.rutgers.edu
  • M. Handel
    • Michael Handel, Dept. of Math., CUNY, Lehman College, Bronx, NY 10468, USA e-mail: chflc@cunyvm.cuny.edu

DOI: 10.1007/PL00001618

Cite this article as:
Bestvina, M., Feighn, M. & Handel, M. GAFA, Geom. funct. anal. (1997) 7: 215. doi:10.1007/PL00001618

Abstract.

We examine the action of Out(F n ) on the set of (irreducible) laminations. Consequences include a special case of the Tits alternative for Out(F n ), the discreteness of certain naturally arising group actions on trees, and word hyperbolicity of certain semidirect products.

Copyright information

© Birkhäuser Verlag, Basel, 1997