Journal of Mathematical Fluid Mechanics

, Volume 3, Issue 2, pp 183–211

Translational Steady Fall of Symmetric Bodies in a Navier-Stokes Liquid, with Application to Particle Sedimentation

  • Giovanni P. Galdi
  • Ashwin Vaidya

DOI: 10.1007/PL00000968

Cite this article as:
Galdi, G. & Vaidya, A. J. math. fluid mech. (2001) 3: 183. doi:10.1007/PL00000968


Let \( \cal B \); be a homogeneous body of revolution around an axis a, with fore-and-aft symmetry. Typical examples are bodies of constant density having the shape of cylinders of circular cross-section, of prolate and oblate spheroids, etc. In this paper we prove that, provided a certain geometric condition is satisfied, the only possible orientations that \( \cal B \); can eventually achieve when dropped in a Navier-Stokes fluid under the action of the acceleration of gravity g and at a small and nonzero Reynolds number, is with a either parallel or perpendicular to g. This result is obtained by a rigorous calculation of the torque exerted by the fluid on the body. We also show that the above geometric condition is certainly satisfied if \( \cal B \); is a prolate spheroid. Moreover, in this case, we prove, by a "quasi-steady" argument, that, at first order in λ, the configuration with a perpendicular to g is stable to small disorientation, while the other is unstable, in accordance with experiments.

Keywords. Steady fall, Navier-Stokes, symmetric bodies, particle sedimentation, orientation.

Copyright information

© Birkhäuser Verlag, Basel, 2001

Authors and Affiliations

  • Giovanni P. Galdi
    • 1
  • Ashwin Vaidya
    • 1
  1. 1.Department of Mechanical Engineering, University of Pittsburgh, 630 Benedum Hall, Pittsburgh, PA 15261, USAUS