Archiv der Mathematik

, Volume 77, Issue 4, pp 360–368

Uniqueness of the 120-point spherical 11-design in four dimensions

Authors

  • P. Boyvalenkov
    • Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 G. Bonchev str., Sofia 1113, Bulgaria, peter@moi.math.bas.bg
  • D. Danev
    • Dept. of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden, danyo@isy.liu.se

DOI: 10.1007/PL00000504

Cite this article as:
Boyvalenkov, P. & Danev, D. Arch. Math. (2001) 77: 360. doi:10.1007/PL00000504

Abstract.

We prove that on the Euclidean sphere S3 there exist a unique up to isometry 120-point spherical 11-design and a maximal (4, 120, \( cos(\pi/5) \))-code. Both these are nothing but copies of a famous regular polytope in four dimensions – the 600-cell.

Download to read the full article text

Copyright information

© Birkhäuser Verlag, Basel 2001