# Discrete versions of the Beckman—Quarles theorem

## Authors

DOI: 10.1007/PL00000119

- Cite this article as:
- Tyszka, A. Aequ. math. (2000) 59: 124. doi:10.1007/PL00000119

- 2 Citations
- 48 Views

## Summary.

We prove that:¶(1) if \( x,y\in {\Bbb R}^{n}\ (n>1) \) and \( |x-y| \) is an algebraic number then there exists a finite set \( S_{xy}\subseteq {\Bbb R}^{n} \) containing *x* and *y* such that each map from *S*_{xy} to \( {\Bbb R}^{n} \) preserving all unit distances preserves the distance between *x* and *y*,¶(2) only algebraic distances \( |x-y| \) have the property from item (1),¶(3) if \( X_{1},X_{2},\dots ,X_{m}\in {\Bbb R}^{n}\ (n>1) \) lie on some affine hyperplane then there exists a finite set \( L(X_{1},X_{2},\dots ,X_{m}) \subseteq {\Bbb R}^{n} \) containing \( X_{1},X_{2},\dots ,X_{m} \) such that each map from \( L(X_{1},X_{2},\dots ,X_{m}) \) to \( {\Bbb R}^{n} \) preserving all unit distances preserves the property that \( X_{1},X_{2},\dots ,X_{m} \) lie on some affine hyperplane,¶(4) if \( J,K,L,M \in {\Bbb R}^{n}\ (n>1) \) and \( |JK|=|LM|\,(|JK|T < |LM|) \) then there exists a finite set \( C_{JKLM}\subseteq {\Bbb R}^{n} \)> containing *J,K,L,M* such that any map \( f : C_{JKLM} \rightarrow {\Bbb R}^{n} \) that preserves unit distances satisfies \( |f(J)f(K)|=|f(L)f(M)| (|f(J)f(K)| < |f(L)f(M)|) \).