Skip to main content
Log in

Analytic solution for tachyon condensation in Berkovits’ open superstring field theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present an analytic solution for tachyon condensation on a non-BPS D-brane in Berkovits’ open superstring field theory. The solution is presented as a product of 2 × 2 matrices in two distinct GL 2 subgroups of the open string star algebra. All string fields needed for computation of the nonpolynomial action can be derived in closed form, and the action produces the expected non-BPS D-brane tension in accordance with Sen’s conjecture. We also comment on how D-brane charges may be encoded in the topology of the tachyon vacuum gauge orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP 03 (2000) 002 [hep-th/9912249] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Moeller and W. Taylor, Level truncation and the tachyon in open bosonic string field theory, Nucl. Phys. B 583 (2000) 105 [hep-th/0002237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Gaiotto and L. Rastelli, Experimental string field theory, JHEP 08 (2003) 048 [hep-th/0211012] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Berkovits, A. Sen and B. Zwiebach, Tachyon condensation in superstring field theory, Nucl. Phys. B 587 (2000) 147 [hep-th/0002211] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. P.-J. De Smet and J. Raeymaekers, Level four approximation to the tachyon potential in superstring field theory, JHEP 05 (2000) 051 [hep-th/0003220] [INSPIRE].

    Article  Google Scholar 

  7. A. Iqbal and A. Naqvi, Tachyon condensation on a nonBPS D-brane, hep-th/0004015 [INSPIRE].

  8. P.-J. De Smet, Tachyon condensation: Calculations in string field theory, hep-th/0109182 [INSPIRE].

  9. J. Raeymaekers, Tachyon Condensation in String Field Theory, PhD Thesis, KULeuven (2001).

  10. M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Sen, Stable nonBPS bound states of BPS D-branes, JHEP 08 (1998) 010 [hep-th/9805019] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Sen, Tachyon condensation on the brane anti-brane system, JHEP 08 (1998) 012 [hep-th/9805170] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Sen, Universality of the tachyon potential, JHEP 12 (1999) 027 [hep-th/9911116] [INSPIRE].

    Article  ADS  Google Scholar 

  16. N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439-451] [hep-th/9503099] [INSPIRE].

  17. N. Berkovits, A New approach to superstring field theory, Fortsch. Phys. 48 (2000) 31 [hep-th/9912121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. T. Erler, Tachyon Vacuum in Cubic Superstring Field Theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. C.R. Preitschopf, C.B. Thorn and S.A. Yost, Superstring field theory, Nucl. Phys. B 337 (1990) 363 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. I.Y. Arefeva, P. Medvedev and A. Zubarev, New Representation for String Field Solves the Consistency Problem for Open Superstring Field Theory, Nucl. Phys. B 341 (1990) 464 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Schnabl, private communication.

  22. E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Erler, Comments on the tachyon vacuum in nonpolynomial superstring field theory, Talk delivered at the APCTP Focus Program on Current Trends in String Field Theory, Pohang, Korea, Dec. 2009, http://newton.skku.ac.kr/workshop/SFT2009/program.html.

  24. L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. N. Berkovits, The Ramond sector of open superstring field theory, JHEP 11 (2001) 047 [hep-th/0109100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. Y. Michishita, A Covariant action with a constraint and Feynman rules for fermions in open superstring field theory, JHEP 01 (2005) 012 [hep-th/0412215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. L. Barosi and C. Tello, GSO(−) vertex operators and open superstring field theory in hybrid variables, JHEP 05 (2003) 004 [hep-th/0303246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Bagchi and A. Sen, Tachyon Condensation on Separated Brane-Antibrane System, JHEP 05 (2008) 010 [arXiv:0801.3498] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. N. Berkovits, Y. Okawa and B. Zwiebach, WZW-like action for heterotic string field theory, JHEP 11 (2004) 038 [hep-th/0409018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. T. Erler, Exotic Universal Solutions in Cubic Superstring Field Theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. T. Erler, Split String Formalism and the Closed String Vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. Y. Okawa, Analytic methods in open string field theory, Prog. Theor. Phys. 128 (2012) 1001 [INSPIRE].

    Article  ADS  Google Scholar 

  37. E.A. Arroyo, Generating Erler-Schnabl-type Solution for Tachyon Vacuum in Cubic Superstring Field Theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. L. Rastelli and B. Zwiebach, Solving Open String Field Theory with Special Projectors, JHEP 01 (2008) 020 [hep-th/0606131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. Y. Okawa, L. Rastelli and B. Zwiebach, Analytic Solutions for Tachyon Condensation with General Projectors, hep-th/0611110 [INSPIRE].

  40. M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. T. Erler, Split String Formalism and the Closed String Vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. T. Erler, The Identity String Field and the Sliver Frame Level Expansion, JHEP 11 (2012) 150 [arXiv:1208.6287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: Foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. T. Erler, A simple analytic solution for tachyon condensation, Theor. Math. Phys. 163 (2010) 705 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open string field theory, JHEP 10 (2012) 113 [arXiv:1207.6220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. H. Hata and T. Kojita, Singularities in K-space and Multi-brane Solutions in Cubic String Field Theory, JHEP 02 (2013) 065 [arXiv:1209.4406] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. T. Masuda, Comments on new multiple-brane solutions based on Hata-Kojita duality in open string field theory, arXiv:1211.2649 [INSPIRE].

  48. E.A. Arroyo, Comments on multibrane solutions in cubic superstring field theory, arXiv:1306.1865 [INSPIRE].

  49. H. Hata and T. Kojita, Inversion Symmetry of Gravitational Coupling in Cubic String Field Theory, arXiv:1307.6636 [INSPIRE].

  50. M. Murata and M. Schnabl, On Multibrane Solutions in Open String Field Theory, Prog. Theor. Phys. Suppl. 188 (2011) 50 [arXiv:1103.1382] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. R. Gorbachev, New solution of the superstring equation of motion, Theor. Math. Phys. 162 (2010) 90 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. T. Erler and C. Maccaferri, The Phantom Term in Open String Field Theory, JHEP 06 (2012) 084 [arXiv:1201.5122] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. I. Ellwood, The Closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. Y. Michishita, On-shell gauge invariants and field strengths in open superstring field theory, Nucl. Phys. B 698 (2004) 111 [hep-th/0406242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. T. Erler and C. Maccaferri, Connecting Solutions in Open String Field Theory with Singular Gauge Transformations, JHEP 04 (2012) 107 [arXiv:1201.5119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. K. Ohmori, Level expansion analysis in NS superstring field theory revisited, hep-th/0305103 [INSPIRE].

  59. T. Erler, Marginal Solutions for the Superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. T. Noumi and Y. Okawa, Solutions from boundary condition changing operators in open superstring field theory, JHEP 12 (2011) 034 [arXiv:1108.5317] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. M. Kroyter, Democratic Superstring Field Theory: Gauge Fixing, JHEP 03 (2011) 081 [arXiv:1010.1662] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. M. Kroyter, Superstring field theory in the democratic picture, Adv. Theor. Math. Phys. 15 (2011) 741 [arXiv:0911.2962] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  66. M. Kudrna, C. Maccaferri and M. Schnabl, Boundary State from Ellwood Invariants, JHEP 07 (2013) 033 [arXiv:1207.4785] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  67. T. Baba and N. Ishibashi, Energy from the gauge invariant observables, JHEP 04 (2013) 050 [arXiv:1208.6206] [INSPIRE].

    Article  ADS  Google Scholar 

  68. N. Berkovits, The Tachyon potential in open Neveu-Schwarz string field theory, JHEP 04 (2000) 022 [hep-th/0001084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. L. Bonora, C. Maccaferri and D. Tolla, Relevant Deformations in Open String Field Theory: a Simple Solution for Lumps, JHEP 11 (2011) 107 [arXiv:1009.4158] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. T. Erler and C. Maccaferri, Comments on Lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. G. Calcagni and G. Nardelli, Kinks of open superstring field theory, Nucl. Phys. B 823 (2009) 234 [arXiv:0904.3744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. L. Rastelli, Comments on the open string C algebra, Talk presented at the Simons Center workshop on String Field Theory, Stony Brook University, New York U.S.A. (2009).

  74. M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].

  75. R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. E. Witten, Overview of k-theory applied to strings, Int. J. Mod. Phys. A 16 (2001) 693 [hep-th/0007175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. E. Fuchs and M. Kroyter, On the classical equivalence of superstring field theories, JHEP 10 (2008) 054 [arXiv:0805.4386] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. M. Kroyter, Y. Okawa, M. Schnabl, S. Torii and B. Zwiebach, Open superstring field theory I: gauge fixing, ghost structure and propagator, JHEP 03 (2012) 030 [arXiv:1201.1761] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. N. Berkovits, Constrained BV Description of String Field Theory, JHEP 03 (2012) 012 [arXiv:1201.1769] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. S. Torii, Gauge fixing of open superstring field theory in the Berkovits non-polynomial formulation, Prog. Theor. Phys. Suppl. 188 (2011) 272 [arXiv:1201.1763] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  82. S. Torii, Validity of Gauge-Fixing Conditions and the Structure of Propagators in Open Superstring Field Theory, JHEP 04 (2012) 050 [arXiv:1201.1762] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore Erler.

Additional information

ArXiv ePrint: 1308.4400

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erler, T. Analytic solution for tachyon condensation in Berkovits’ open superstring field theory. J. High Energ. Phys. 2013, 7 (2013). https://doi.org/10.1007/JHEP11(2013)007

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)007

Keywords

Navigation