Enhancement of loop induced 125 GeV Higgs pair production through large-extra-dimensions model at the LHC Article First Online: 21 November 2012 Received: 05 July 2012 Revised: 11 October 2012 Accepted: 01 November 2012 DOI :
10.1007/JHEP11(2012)127

Cite this article as: Hao, S. & Ya-Jin, Z. J. High Energ. Phys. (2012) 2012: 127. doi:10.1007/JHEP11(2012)127
1
Citations
101
Downloads
Abstract Based on the analysis of 5 fb^{−1} of data at the LHC, the ATLAS and CMS collaborations have presented evidence for a Higgs boson with a mass in the 125 GeV range. We consider the 125 GeV neutral Higgs pair production process in the context of large-extra-dimensions (LED) model including the Kaluza-Klein (KK) excited gravitons at the LHC. We take into account the LED effects coming from gluon-gluon fusion and quark-antiquark collision channels as well as their corresponding next-to-leading order (NLO) QCD loop induced corrections. We analyse their impacts on both the total cross section and some key distributions. Indeed, pp → HH has the clear advantage of a lower standard model (SM) background compare to process like pp → jj , though its SM prediction is very small, it is shown that the LED model raises the cross section of Higgs pair production compare to its SM prediction and enhance the transverse momentum \( \left( {p_T^H} \right) \) and invariant mass (M _{HH} ) distributions especially at high scales of \( p_T^H \) and M _{HH} . By including the NLO QCD loop corrections, the scale dependence of total cross section can be reduced obviously. Choose suitable decay modes like \( H\,H\to b\overline{b}\gamma \gamma \) or \( H\,H\to b\overline{b}{\mu^{-}}{\mu^{+}} \) and some simple cuts, we can strongly reduce the SM background but keep most of the LED effects, leading Higgs pair production a promising channel to search LED effects.

Keywords Phenomenology of Large extra dimensions NLO Computations

References [1]

N. Arkani-Hamed, S. Dimopoulos and G. Dvali,

The hierarchy problem and new dimensions at a millimeter ,

Phys. Lett.
B 429 (1998) 263 [

hep-ph/9803315 ] [

INSPIRE ].

ADS Google Scholar [2]

N. Arkani-Hamed, S. Dimopoulos and G. Dvali,

Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity ,

Phys. Rev.
D 59 (1999) 086004 [

hep-ph/9807344 ] [

INSPIRE ].

ADS Google Scholar [3]

D. Kapner et al.,

Tests of the gravitational inverse-square law below the dark-energy length scale ,

Phys. Rev. Lett.
98 (2007) 021101 [

hep-ph/0611184 ] [

INSPIRE ].

ADS CrossRef Google Scholar [4]

T. Plehn, M. Spira and P. Zerwas,

Pair production of neutral Higgs particles in gluon-gluon collisions ,

Nucl. Phys.
B 479 (1996) 46 [

Erratum ibid.
B 531 (1998) 655] [

hep-ph/9603205 ] [

INSPIRE ].

[5]

U. Baur, T. Plehn and D.L. Rainwater,

Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis ,

Phys. Rev.
D 68 (2003) 033001 [

hep-ph/0304015 ] [

INSPIRE ].

ADS Google Scholar [6]

U. Baur, T. Plehn and D.L. Rainwater,

Probing the Higgs selfcoupling at hadron colliders using rare decays ,

Phys. Rev.
D 69 (2004) 053004 [

hep-ph/0310056 ] [

INSPIRE ].

ADS Google Scholar [7]

M.J. Dolan, C. Englert and M. Spannowsky,

Higgs self-coupling measurements at the LHC ,

JHEP
10 (2012) 112 [

arXiv:1206.5001 ] [

INSPIRE ].

ADS CrossRef Google Scholar [8]

H. Sun et al.,

Neutral Higgs boson pair production in standard model with the fourth generation quarks at LHC ,

Commun. Theor. Phys.
41 (2004) 73 [

INSPIRE ].

Google Scholar [9]

L. Wang, W. Wang, J.M. Yang and H. Zhang,

Higgs-pair production in littlest Higgs model with T-parity ,

Phys. Rev.
D 76 (2007) 017702 [

arXiv:0705.3392 ] [

INSPIRE ].

ADS Google Scholar [10]

H. de Sandes and R. Rosenfeld,

Higgs pair production in models with universal extra dimensions ,

Phys. Lett.
B 659 (2008) 323 [

arXiv:0706.2665 ] [

INSPIRE ].

ADS Google Scholar [11]

C. Kim, K.Y. Lee and J.-H. Song,

Enhancement of the Higgs pair production at CERN LHC: the MSSM and extra dimension effects ,

Phys. Rev.
D 64 (2001) 015009 [

hep-ph/0009231 ] [

INSPIRE ].

ADS Google Scholar [12]

G.F. Giudice, R. Rattazzi and J.D. Wells,

Quantum gravity and extra dimensions at high-energy colliders ,

Nucl. Phys.
B 544 (1999) 3 [

hep-ph/9811291 ] [

INSPIRE ].

ADS CrossRef Google Scholar [13]

T. Han, J.D. Lykken and R.-J. Zhang,

On Kaluza-Klein states from large extra dimensions ,

Phys. Rev.
D 59 (1999) 105006 [

hep-ph/9811350 ] [

INSPIRE ].

MathSciNet ADS Google Scholar [14]

J.L. Hewett,

Indirect Collider Signals for Extra Dimensions ,

Phys. Rev. Lett.
82 (1999) 4765.

ADS CrossRef Google Scholar [15]

P. Mathews, V. Ravindran, K. Sridhar and W.L. van Neerven,

Next-to-leading order QCD corrections to the DrellYan cross section in models of TeV-scale gravity ,

Nucl. Phys.
B 713 (2005) 333.

ADS CrossRef Google Scholar [16]

P. Mathews and V. Ravindran,

Angular distribution of Drell-Yan process at hadron colliders to NLO-QCD in models of TeV scale gravity ,

Nucl. Phys.
B 753 (2006) 1 [

hep-ph/0507250 ] [

INSPIRE ].

ADS CrossRef Google Scholar [17]

M. Kumar, P. Mathews and V. Ravindran,

PDF and scale uncertainties of various DY distributions in ADD and RS models at hadron colliders ,

Eur. Phys. J.
C 49 (2007) 599 [

hep-ph/0604135 ] [

INSPIRE ].

ADS CrossRef Google Scholar [18]

O.J. Eboli, T. Han, M. Magro and P. Mercadante,

Diphoton signals for large extra dimensions at the Tevatron and CERN LHC ,

Phys. Rev.
D 61 (2000) 094007 [

hep-ph/9908358 ] [

INSPIRE ].

ADS Google Scholar [19]

K.-m. Cheung and G.L. Landsberg,

Drell-Yan and diphoton production at hadron colliders and low scale gravity model ,

Phys. Rev.
D 62 (2000) 076003 [

hep-ph/9909218 ] [

INSPIRE ].

ADS Google Scholar [20]

M. Kumar, P. Mathews, V. Ravindran and A. Tripathi,

Diphoton signals in theories with large extra dimensions to NLO QCD at hadron colliders ,

Phys. Lett.
B 672 (2009) 45 [

arXiv:0811.1670 ] [

INSPIRE ].

ADS Google Scholar [21]

M. Kumar, P. Mathews, V. Ravindran and A. Tripathi,

Direct photon pair production at the LHC to order α

_{s}
in TeV scale gravity models ,

Nucl. Phys.
B 818 (2009) 28 [

arXiv:0902.4894 ] [

INSPIRE ].

ADS CrossRef Google Scholar [22]

M. Kober, B. Koch and M. Bleicher,

First Order Calculation of the Inclusive Cross Section pp to ZZ by Graviton Exchange in Large Extra Dimensions ,

Phys. Rev.
D 76 (2007) 125001 [

arXiv:0708.2368 ] [

INSPIRE ].

ADS Google Scholar [23]

J. Gao, C.S. Li, X. Gao and J.J. Zhang,

Signature of Large Extra Dimensions from Z boson pair production at the CERN Large Hadron Collider ,

Phys. Rev.
D 80 (2009) 016008 [

arXiv:0903.2551 ] [

INSPIRE ].

ADS Google Scholar [24]

N. Agarwal, V. Ravindran, V. Tiwari and A. Tripathi,

Z boson pair production at the LHC to O (α

_{s} )

in TeV scale gravity models ,

Nucl. Phys.
B 830 (2010) 248 [

arXiv:0909.2651 ] [

INSPIRE ].

ADS CrossRef Google Scholar [25]

Z. Usubov and I. Minashvili,

Impact of space-time extra dimensions on μ
^{+}
μ
^{−}
and W
^{+}
W
^{−}
angular distributions in e
^{+}
e
^{−}
collisions ,

Phys. Part. Nucl. Lett.
3 (2006) 153 [

INSPIRE ].

CrossRef Google Scholar [26]

K.Y. Lee, H. Song and J.-H. Song,

Polarization effects on the e
^{+}
e
^{−} →

W
^{+}
W
^{−}
process with large extra dimensions ,

Phys. Lett.
B 464 (1999) 82 [

hep-ph/9904355 ] [

INSPIRE ].

ADS Google Scholar [27]

N. Agarwal, V. Ravindran, V.K. Tiwari and A. Tripathi,

W
^{+}
W
^{−}
production in Large extra dimension model at next-to-leading order in QCD at the LHC ,

Phys. Rev.
D 82 (2010) 036001 [

arXiv:1003.5450 ] [

INSPIRE ].

ADS Google Scholar [28]

Y.-M. Bai, L. Guo, X.-Z. Li, W.-G. Ma and R.-Y. Zhang,

Revisiting the large extra dimension effects on W -pair production at the LHC in next-to-leading order QCD ,

Phys. Rev.
D 85 (2012) 016008 [

arXiv:1112.4894 ] [

INSPIRE ].

ADS Google Scholar [29]

P. Mathews, S. Raychaudhuri and K. Sridhar,

Getting to the top with extra dimensions ,

Phys. Lett.
B 450 (1999) 343 [

hep-ph/9811501 ] [

INSPIRE ].

MathSciNet ADS Google Scholar [30]

P. Mathews, S. Raychaudhuri and K. Sridhar,

Testing TeV scale quantum gravity using dijet production at the Tevatron ,

JHEP
07 (2000) 008 [

hep-ph/9904232 ] [

INSPIRE ].

ADS CrossRef Google Scholar [31]

K.Y. Lee, H. Song, J.-H. Song and C. Yu,

Large extra dimension effects on the spin configuration of the top quark pair at e
^{+}
e
^{−}
colliders ,

Phys. Rev.
D 60 (1999) 093002 [

hep-ph/9905227 ] [

INSPIRE ].

ADS Google Scholar [32]

K.Y. Lee, S.C. Park, H. Song, J.-H. Song and C. Yu,

Spin configuration of top quark pair production with large extra dimensions at photon-photon colliders ,

Phys. Rev.
D 61 (2000) 074005 [

hep-ph/9910466 ] [

INSPIRE ].

ADS Google Scholar [33]

K.Y. Lee, J.-H. Song, S.C. Park, H. Song and C. Yu,

Probing large extra dimensions with spin configuration of top quark pair production at the JLC ,

hep-ph/0105326 [

INSPIRE ].

[34]

S. Inan and A. Billur,

Polarized top pair production in extra dimension models via photon-photon fusion at the CERN LHC ,

Phys. Rev.
D 84 (2011) 095002 [

INSPIRE ].

ADS Google Scholar [35]

H. Sun, Y.-J. Zhou and H. Chen,

Constraints on large-extra-dimensions model through 125-GeV Higgs pair production at the LHC ,

Eur. Phys. J.
C 72 (2012) 2011 [

INSPIRE ].

ADS Google Scholar [36]

CMS collaboration, S. Chatrchyan et al.,

Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy ,

Phys. Rev. Lett.
108 (2012) 261803 [

arXiv:1204.0821 ] [

INSPIRE ].

ADS CrossRef Google Scholar [37]

CMS collaboration, S. Chatrchyan et al.,

Search for large extra dimensions in dimuon and dielectron events in pp collisions at
\( \sqrt{s}=7 \)
TeV ,

Phys. Lett.
B 711 (2012) 15 [

arXiv:1202.3827 ] [

INSPIRE ].

ADS Google Scholar [38]

CMS collaboration, S. Chatrchyan et al.,

Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider ,

arXiv:1112.0688 [

INSPIRE ].

[39]

R. Franceschini, P.P. Giardino, G.F. Giudice, P. Lodone and A. Strumia,

LHC bounds on large extra dimensions ,

JHEP
05 (2011) 092 [

arXiv:1101.4919 ] [

INSPIRE ].

ADS CrossRef Google Scholar [40]

ATLAS collaboration,

Combination of Higgs Boson Searches with up to 4.9 fb
^{−1}
of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC ,

ATLAS-CONF-2011-163 (2011).

[41]

CMS collaboration,

Combination of SM Higgs Searches ,

CMS-PAS-HIG-11-032 (2011).

[42]

Y.-M. Bai, L. Guo, X.-Z. Li, W.-G. Ma and R.-Y. Zhang,

Revisiting the large extra dimension effects on W -pair production at the LHC in next-to-leading order QCD ,

Phys. Rev.
D 85 (2012) 016008 [

arXiv:1112.4894 ] [

INSPIRE ].

ADS Google Scholar [43]

M. Guzzi et al.,

CT10 parton distributions and other developments in the global QCD analysis ,

SMU-HEP-10-11 (2011).

[44]

S. Kawabata,

A New version of the multidimensional integration and event generation package BASES/SPRING ,

Comput. Phys. Commun.
88 (1995) 309 [

INSPIRE ].

ADS MATH CrossRef Google Scholar [45]

A. van Hameren,

Kaleu: A General-Purpose Parton-Level Phase Space Generator ,

arXiv:1003.4953 [

INSPIRE ].

[46]

B. Harris and J. Owens,

The Two cutoff phase space slicing method ,

Phys. Rev.
D 65 (2002) 094032 [

hep-ph/0102128 ] [

INSPIRE ].

ADS Google Scholar [47]

T. Hahn,

Generating Feynman diagrams and amplitudes with FeynArts 3 ,

Comput. Phys. Commun.
140 (2001) 418 [

hep-ph/0012260 ] [

INSPIRE ].

ADS MATH CrossRef Google Scholar [48]

T. Hahn,

Automatic loop calculations with FeynArts, FormCalc and LoopTools ,

Nucl. Phys. Proc. Suppl.
89 (2000) 231 [

hep-ph/0005029 ] [

INSPIRE ].

ADS CrossRef Google Scholar [49]

T. Hahn and M. Pérez-Victoria,

Automatized one loop calculations in four-dimensions and D-dimensions ,

Comput. Phys. Commun.
118 (1999) 153 [

hep-ph/9807565 ] [

INSPIRE ].

ADS CrossRef Google Scholar [50]

A. van Hameren,

OneLOop: For the evaluation of one-loop scalar functions ,

Comput. Phys. Commun.
182 (2011) 2427 [

arXiv:1007.4716 ] [

INSPIRE ].

ADS CrossRef Google Scholar [51]

A. Djouadi, J. Kalinowski and M. Spira,

HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension ,

Comput. Phys. Commun.
108 (1998) 56 [

hep-ph/9704448 ] [

INSPIRE ].

ADS MATH CrossRef Google Scholar [52]

P

article D

ata G

roup collaboration, K. Nakamura et al.,

Review of particle physics ,

J. Phys.
G 37 (2010) 075021 [

INSPIRE ].

ADS Google Scholar [53]

U. Baur, T. Plehn and D.L. Rainwater,

Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis ,

Phys. Rev.
D 68 (2003) 033001 [

hep-ph/0304015 ] [

INSPIRE ].

ADS Google Scholar © SISSA, Trieste, Italy 2012

Authors and Affiliations 1. School of Physics and Technology University of Jinan Jinan P.R. China 2. School of Physics Shandong University Jinan P.R. China