Journal of High Energy Physics

, 2012:120

Relating harmonic and projective descriptions of \( \mathcal{N}=2 \) nonlinear sigma models


DOI: 10.1007/JHEP11(2012)120

Cite this article as:
Butter, D. J. High Energ. Phys. (2012) 2012: 120. doi:10.1007/JHEP11(2012)120


Recent papers have established the relationship between projective superspace and a complexified version of harmonic superspace. We extend this construction to the case of general nonlinear sigma models in both frameworks. Using an analogy with Hamiltonian mechanics, we demonstrate how the Hamiltonian structure of the harmonic action and the symplectic structure of the projective action naturally arise from a single unifying action on a complexified version of harmonic superspace. This links the harmonic and projective descriptions of hyperkähler target spaces. For the two examples of Taub-NUT and Eguchi-Hanson, we show how to derive the projective superspace solutions from the harmonic superspace solutions.


Extended SupersymmetrySuperspacesSigma Models

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.School of Physics M013, The University of Western AustraliaCrawleyAustralia