Skip to main content
Log in

Hybrid Monte Carlo on Lefschetz thimbles — A study of the residual sign problem

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a hybrid Monte Carlo algorithm which is applicable to lattice theories defined on Lefschetz thimbles. In the algorithm, any point (field configuration) on a thimble is parametrized uniquely by the flow-direction and the flow-time defined at a certain asymptotic region close to the critical point, and it is generated by solving the gradient flow equation downward. The associated complete set of tangent vectors is also generated in the same manner. Molecular dynamics is then formulated as a constrained dynamical system, where the equations of motion with Lagrange multipliers are solved by the second-order constraint-preserving symmetric integrator. The algorithm is tested in the λϕ 4 model at finite density, by choosing the thimbles associated with the classical vacua for subcritical and supercritical values of chemical potential. For the lattice size L = 4, we find that the residual sign factors average to not less than 0.99 and are safely included by reweighting and that the results of the number density are consistent with those obtained by the complex Langevin simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. de Forcrand, Simulating QCD at finite density, PoS(LAT2009)010 [arXiv:1005.0539] [INSPIRE].

  2. S. Gupta, QCD at finite density, PoS(LATTICE 2010)007 [arXiv:1101.0109] [INSPIRE].

  3. L. Levkova, QCD at nonzero temperature and density, PoS(LATTICE 2011)011 [arXiv:1201.1516] [INSPIRE].

  4. S. Ejiri, Phase structure of hot dense QCD by a histogram method, Eur. Phys. J. A 49 (2013) 86 [arXiv:1306.0295] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Aarts, Complex Langevin dynamics and other approaches at finite chemical potential, PoS(LATTICE 2012)017 [arXiv:1302.3028] [INSPIRE].

  6. C. Gattringer, New developments for lattice field theory at non-zero density, plenary talk at Lattice 2013, July 29-August 3, Mainz, Germany (2013).

  7. G. Parisi, On complex probabilities, Phys. Lett. B 131 (1983) 393 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.R. Klauder, A Langevin approach to fermion and quantum spin correlation functions, J. Phys. A 16 (1983) L317.

    MathSciNet  ADS  Google Scholar 

  9. J.R. Klauder, Coherent state Langevin equations for canonical quantum systems with applications to the quantized Hall effect, Phys. Rev. A 29 (1984) 2036 [INSPIRE].

    Article  ADS  Google Scholar 

  10. E. Witten, Analytic continuation of Chern-Simons theory, arXiv:1001.2933 [INSPIRE].

  11. AuroraScience collaboration, M. Cristoforetti, F. Di Renzo and L. Scorzato, New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506 [arXiv:1205.3996] [INSPIRE].

    ADS  Google Scholar 

  12. J. Ambjørn and S.K. Yang, Numerical problems in applying the Langevin equation to complex effective actions, Phys. Lett. B 165 (1985) 140 [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Ambjørn, M. Flensburg and C. Peterson, The complex Langevin equation and Monte Carlo simulations of actions with static charges, Nucl. Phys. B 275 (1986) 375 [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Berges, S. Borsányi, D. Sexty and I.-O. Stamatescu, Lattice simulations of real-time quantum fields, Phys. Rev. D 75 (2007) 045007 [hep-lat/0609058] [INSPIRE].

    ADS  Google Scholar 

  15. J. Berges and D. Sexty, Real-time gauge theory simulations from stochastic quantization with optimized updating, Nucl. Phys. B 799 (2008) 306 [arXiv:0708.0779] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Aarts and I.-O. Stamatescu, Stochastic quantization at finite chemical potential, JHEP 09 (2008) 018 [arXiv:0807.1597] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Aarts, Can stochastic quantization evade the sign problem? The relativistic Bose gas at finite chemical potential, Phys. Rev. Lett. 102 (2009) 131601 [arXiv:0810.2089] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Aarts, Complex Langevin dynamics at finite chemical potential: Mean field analysis in the relativistic Bose gas, JHEP 05 (2009) 052 [arXiv:0902.4686] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Adaptive stepsize and instabilities in complex Langevin dynamics, Phys. Lett. B 687 (2010) 154 [arXiv:0912.0617] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Aarts, E. Seiler and I.-O. Stamatescu, The complex Langevin method: when can it be trusted?, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360] [INSPIRE].

    ADS  Google Scholar 

  21. G. Aarts and F.A. James, On the convergence of complex Langevin dynamics: The Three-dimensional XY model at finite chemical potential, JHEP 08 (2010) 020 [arXiv:1005.3468] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Complex Langevin: etiology and diagnostics of its main problem, Eur. Phys. J. C 71 (2011) 1756 [arXiv:1101.3270][INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Aarts and F.A. James, Complex Langevin dynamics in the SU(3) spin model at nonzero chemical potential revisited, JHEP 01 (2012) 118 [arXiv:1112.4655] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Seiler, D. Sexty and I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723 (2013) 213 [arXiv:1211.3709] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.M. Pawlowski and C. Zielinski, Thirring model at finite density in 0 + 1 dimensions with stochastic quantization: crosscheck with an exact solution, Phys. Rev. D 87 (2013) 094503 [arXiv:1302.1622] [INSPIRE].

    ADS  Google Scholar 

  26. J.M. Pawlowski and C. Zielinski, Thirring model at finite density in 2 + 1 dimensions with stochastic quantization, Phys. Rev. D 87 (2013) 094509 [arXiv:1302.2249] [INSPIRE].

    ADS  Google Scholar 

  27. G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty and I.-O. Stamatescu, Controlling complex Langevin dynamics at finite density, Eur. Phys. J. A 49 (2013) 89 [arXiv:1303.6425] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Aarts, P. Giudice, E. Seiler and E. Seiler, Localised distributions and criteria for correctness in complex Langevin dynamics, Annals Phys. 337 (2013) 238 [arXiv:1306.3075] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Sexty, Simulating full QCD at nonzero density using the complex Langevin equation, arXiv:1307.7748 [INSPIRE].

  30. G. Aarts, Lefschetz thimbles and stochastic quantisation: Complex actions in the complex plane, arXiv:1308.4811 [INSPIRE].

  31. P. Giudice, G. Aarts and E. Seiler, Localised distributions in complex Langevin dynamics, arXiv:1309.3191 [INSPIRE].

  32. C. Gattringer and T. Kloiber, Lattice study of the Silver Blaze phenomenon for a charged scalar ϕ 4 field, Nucl. Phys. B 869 (2013) 56 [arXiv:1206.2954] [INSPIRE].

    Article  ADS  Google Scholar 

  33. Y.D. Mercado and C. Gattringer, Monte Carlo simulation of the SU(3) spin model with chemical potential in a flux representation, Nucl. Phys. B 862 (2012) 737 [arXiv:1204.6074] [INSPIRE].

    Article  ADS  Google Scholar 

  34. C. Gattringer and A. Schmidt, Gauge and matter fields as surfaces and loopsAn exploratory lattice study of the Z(3) Gauge-Higgs model, Phys. Rev. D 86 (2012) 094506 [arXiv:1208.6472] [INSPIRE].

    ADS  Google Scholar 

  35. M. Cristoforetti, L. Scorzato and F. Di Renzo, The sign problem and the Lefschetz thimble, J. Phys. Conf. Ser. 432 (2013) 012025 [arXiv:1210.8026] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, Monte Carlo simulations on the Lefschetz thimble: taming the sign problem, Phys. Rev. D 88 (2013) 051501 [arXiv:1303.7204] [INSPIRE].

    ADS  Google Scholar 

  37. A. Mukherjee, M. Cristoforetti and L. Scorzato, Metropolis Monte Carlo on the Lefschetz thimble: application to a one-plaquette model, Phys. Rev. D 88 (2013) 051502 [arXiv:1308.0233] [INSPIRE].

    ADS  Google Scholar 

  38. B. Leimkuhler and S. Reich, Simulating hamiltonian dynamics, Cambridge University Press, Cambridge U.K. (2004).

    MATH  Google Scholar 

  39. R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge University Press, Cambridge U.K. (1985).

    Book  MATH  Google Scholar 

  40. M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Statist. Soc. B 73 (2011) 1.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kikukawa.

Additional information

ArXiv ePrint: 1309.4371

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, H., Honda, D., Kato, M. et al. Hybrid Monte Carlo on Lefschetz thimbles — A study of the residual sign problem. J. High Energ. Phys. 2013, 147 (2013). https://doi.org/10.1007/JHEP10(2013)147

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)147

Keywords

Navigation