Skip to main content
Log in

Holographic thermalization with chemical potential

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the thermalization of a strongly coupled quantum field theory in the presence of a chemical potential. More precisely, using the holographic prescription, we calculate non-local operators such as two point function, Wilson loop and entanglement entropy in a time-dependent background that interpolates between AdS d+1 and AdS d+1-Reissner-Nordström for d = 3, 4. We find that it is the entanglement entropy that thermalizes the latest and thus sets a time-scale for equilibration in the field theory. We study the dependence of the thermalization time on the probe length and the chemical potential. We find an interesting non-monotonic behavior. For a fixed small value of Tℓ and small values of μ/T the thermalization time decreases as we increase μ/T, thus the plasma thermalizes faster. For large values of μ/T the dependence changes and the thermalization time increases with increasing μ/T. On the other hand, if we increase the value of (Tℓ) this non-monotonic behavior becomes less pronounced and eventually disappears indicating two different regimes for the physics of thermalization: non-monotonic dependence of the thermalization time on the chemical potential for Tℓ ≪ 1 and monotonic for Tℓ ≫ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    Article  ADS  Google Scholar 

  2. V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].

    Google Scholar 

  3. S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  5. V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  6. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].

    ADS  Google Scholar 

  8. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling heavy ion collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].

    Article  Google Scholar 

  10. S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production in heavy ion collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].

    ADS  Google Scholar 

  11. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric Collision of Two Shock Waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Y.V. Kovchegov and S. Lin, Toward thermalization in heavy ion collisions at strong coupling, JHEP 03 (2010) 057 [arXiv:0911.4707] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Y.V. Kovchegov, Shock wave collisions and thermalization in AdS 5, Prog. Theor. Phys. Suppl. 187 (2011) 96 [arXiv:1011.0711] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    Article  ADS  Google Scholar 

  16. I.Y. Aref’eva, A. Bagrov and L. Joukovskaya, Critical trapped surfaces formation in the collision of ultrarelativistic charges in (A)dS, JHEP 03 (2010) 002 [arXiv:0909.1294] [INSPIRE].

    Article  ADS  Google Scholar 

  17. I. Arefeva, A. Bagrov and E. Pozdeeva, Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions, JHEP 05 (2012) 117 [arXiv:1201.6542] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Caron-Huot, P.M. Chesler and D. Teaney, Fluctuation, dissipation and thermalization in non-equilibrium AdS 5 black hole geometries, Phys. Rev. D 84 (2011) 026012 [arXiv:1102.1073] [INSPIRE].

    ADS  Google Scholar 

  19. D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].

    Article  ADS  Google Scholar 

  20. K. Behrndt, M. Cvetič and W. Sabra, Nonextreme black holes of five-dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Behrndt, A.H. Chamseddine and W. Sabra, BPS black holes in N = 2 five-dimensional AdS supergravity, Phys. Lett. B 442 (1998) 97 [hep-th/9807187] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. M. Cvetič and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The operator product expansion for Wilson loops and surfaces in the large-N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  Google Scholar 

  32. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  33. T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].

    Article  ADS  Google Scholar 

  34. V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].

    ADS  Google Scholar 

  35. P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories simplified, JHEP 04 (2011) 027 [arXiv:1101.2689] [INSPIRE].

    Article  ADS  Google Scholar 

  36. E. Caceres, A. Kundu and D.L. Yang, Jet quenching and holographic thermalization with chemical potential, work in progress.

  37. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [INSPIRE].

    Article  ADS  Google Scholar 

  39. H. Kim, L. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D = 10 supergravity on S 5, Phys. Rev. D 32 (1985) 389 [INSPIRE].

    ADS  Google Scholar 

  40. M. Gunaydin and N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2, D = 10 supergravity and the unitary supermultiplets of U(2,2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Günaydin, G. Sierra and P. Townsend, Gauging the D = 5 Maxwell-Einstein supergravity theories: more on Jordan algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].

    Article  ADS  Google Scholar 

  42. R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Caceres.

Additional information

ArXiv ePrint: 1205.2354

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caceres, E., Kundu, A. Holographic thermalization with chemical potential. J. High Energ. Phys. 2012, 55 (2012). https://doi.org/10.1007/JHEP09(2012)055

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)055

Keywords

Navigation