Skip to main content
Log in

Semiclassical black holes expose forbidden charges and censor divergent densities

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Classically, the horizon of a Schwarzschild black hole (BH) is a rigid surface of infinite redshift; whereas the uncertainty principle dictates that the semiclassical (would-be) horizon cannot be fixed in space nor can it exhibit any divergences. We propose that this distinction underlies the BH information-loss paradox, the apparent absence of BH hair, the so-called trans-Planckian problem and the recent “firewall” controversy. We argue that the correct prescription is to first integrate out the fluctuations of the background geometry and only then evaluate matter observables. The basic idea is illustrated using a system of two strongly coupled harmonic oscillators, with the heavier oscillator representing the background. We then apply our proposal to matter fields near a BH horizon, initially treating the matter fields as classical and the background as semiclassical. In this case, the average value of the associated current does not vanish; so that it is possible, in pr inciple, to measure the global charge of the BH. Then the matter is, in addition to the background, treated quantum mechanically. We show that the average energy density of matter as seen by an asymptotic observer is finite and proportional to the BH entropy, rather than divergent. We discuss the implications of our results for the various controversial issues concerning BH physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982).

    Book  MATH  Google Scholar 

  2. S.A. Fulling, Aspects of quantum field theory in curved space-time, Cambridge University Press, Cambridge U.K. (1982).

    Google Scholar 

  3. R.M. Wald, Quantum field theory in curved space-time and black hole thermodynamics, University of Chicago Press, Chicago U.S.A. (1995).

    Google Scholar 

  4. S. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].

  6. R. Brustein, Origin of the blackhole information paradox, arXiv:1209.2686 [INSPIRE].

  7. G. Dvali and C. Gomez, Black holes quantum N-portrait, Fortsch. Phys. 61 (2013) 742 [arXiv:1112.3359] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Dvali and C. Gomez, Black holes 1/N hair, Phys. Lett. B 719 (2013) 419 [arXiv:1203.6575] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Dvali and C. Gomez, Black holes as critical point of quantum phase transition, arXiv:1207.4059 [INSPIRE].

  10. G. Dvali and C. Gomez, Black hole macro-quantumness, arXiv:1212.0765 [INSPIRE].

  11. G. Veneziano, Quantum hair and the string-black hole correspondence, Class. Quant. Grav. 30 (2013) 092001 [arXiv:1212.2606] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Brustein and M. Hadad, Wave function of the quantum black hole, Phys. Lett. B 718 (2012) 653 [arXiv:1202.5273] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. F. Englert and P. Spindel, The hidden horizon and black hole unitarity, JHEP 12 (2010) 065 [arXiv:1009.6190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Giusto and S.D. Mathur, Fuzzball geometries and higher derivative corrections for extremal holes, Nucl. Phys. B 738 (2006) 48 [hep-th/0412133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S.D. Mathur, The quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115 [hep-th/0510180] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S.D. Mathur, Black holes and beyond, Annals Phys. 327 (2012) 2760 [arXiv:1205.0776] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. S.W. Hawking, Black holes and unpredictability, Phys. Bull. 29 (1978) 23 [INSPIRE].

    ADS  Google Scholar 

  19. D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].

  20. S.B. Giddings, Comments on information loss and remnants, Phys. Rev. D 49 (1994) 4078 [hep-th/9310101] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. S.D. Mathur, What exactly is the information paradox?, Lect. Notes Phys. 769 (2009) 3 [arXiv:0803.2030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S.D. Mathur, What the information paradox is not, arXiv:1108.0302 [INSPIRE].

  24. G.W. Gibbons, Quantum processes near black holes, in Proceedings of the Marcel Grossman meeting on Recent Advances in the Fundamentals of General Relativity, R. Ruffini ed., North Holland, Amsterdam The Netherlands (1977).

  25. T. Jacobson, Black hole evaporation and ultrashort distances, Phys. Rev. D 44 (1991) 1731 [INSPIRE].

    ADS  Google Scholar 

  26. T. Jacobson, Black hole radiation in the presence of a short distance cutoff, Phys. Rev. D 48 (1993) 728 [hep-th/9303103] [INSPIRE].

    ADS  Google Scholar 

  27. A.D. Helfer, Do black holes radiate?, Rept. Prog. Phys. 66 (2003) 943 [gr-qc/0304042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Brustein and J. Kupferman, Black hole entropy divergence and the uncertainty principle, Phys. Rev. D 83 (2011) 124014 [arXiv:1010.4157] [INSPIRE].

    ADS  Google Scholar 

  30. G. Dvali, C. Gomez and D. Lüst, Black hole quantum mechanics in the presence of species, Fortsch. Phys. 61 (2013) 768 [arXiv:1206.2365] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A.O. Caldeira and A.J. Leggett, Path integral approach to quantum Brownian motion, Physica A 121 (1983) 587.

    MathSciNet  ADS  Google Scholar 

  32. J.W. York, Dynamical Origin of Black Hole Radiance, Phys. Rev. D 28 (1983) 2929 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. L. Ford and N. Svaiter, Cosmological and black hole horizon fluctuations, Phys. Rev. D 56 (1997) 2226 [gr-qc/9704050] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. L. Ford and N. Svaiter, Vacuum energy density near fluctuating boundaries, Phys. Rev. D 58 (1998) 065007 [quant-ph/9804056] [INSPIRE].

    ADS  Google Scholar 

  35. C. Barrabes, V.P. Frolov and R. Parentani, Stochastically fluctuating black hole geometry, Hawking radiation and the trans-Planckian problem, Phys. Rev. D 62 (2000) 044020 [gr-qc/0001102] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. R. Parentani, Quantum metric fluctuations and Hawking radiation, Phys. Rev. D 63 (2001) 041503 [gr-qc/0009011] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. R. Thompson and L. Ford, Enhanced black hole horizon fluctuations, Phys. Rev. D 78 (2008) 024014 [arXiv:0803.1980] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. S.M. Roy and A. Venugopalan, Exact solutions of the Caldeira-Leggett master equation: a factorization theorem for decoherence, quant-ph/9910004.

  39. K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel. 2 (1999) 2 [gr-qc/9909058] [INSPIRE].

    MathSciNet  Google Scholar 

  40. A. Medved, D. Martin and M. Visser, Dirty black holes: quasinormal modes, Class. Quant. Grav. 21 (2004) 1393 [gr-qc/0310009] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. J.D. Bekenstein, Nonexistence of baryon number for static black holes, Phys. Rev. D 5 (1972) 1239 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. E. Winstanley, On the existence of conformally coupled scalar field hair for black holes in (Anti-)de Sitter space, Found. Phys. 33 (2003) 111 [gr-qc/0205092] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  43. J. Hartle, Long-range neutrino forces exerted by kerr black holes, Phys. Rev. D 3 (1971) 2938 [INSPIRE].

    ADS  Google Scholar 

  44. D.G. Boulware, Quantum field theory in schwarzschild and Rindler spaces, Phys. Rev. D 11 (1975) 1404 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. W. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  46. J.B. Hartle and S.W. Hawking, Path integral derivation of black hole radiance, Phys. Rev. D 13 (1976) 2188 [INSPIRE].

    ADS  Google Scholar 

  47. G. ’t Hooft, On the quantum structure of a black hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. S. Mukohyama and W. Israel, Black holes, brick walls and the Boulware state, Phys. Rev. D 58 (1998) 104005 [gr-qc/9806012] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. J.M. Maldacena, The black hole information problem, lecture presented at the conference Forty Years of Black Hole Thermodynamics, September 3-7, Jerusalem, Israel (2012).

  50. J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].

  52. L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].

  53. R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].

    ADS  Google Scholar 

  54. Y. Nomura, J. Varela and S.J. Weinberg, Complementarity endures: no firewall for an infalling observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].

    Article  ADS  Google Scholar 

  55. Y. Nomura, J. Varela and S.J. Weinberg, Black holes, information and Hilbert space for quantum gravity, Phys. Rev. D 87 (2013) 084050 [arXiv:1210.6348] [INSPIRE].

    ADS  Google Scholar 

  56. S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, arXiv:1208.2005 [INSPIRE].

  57. S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity:Alice fuzzes but may not even know it!’, JHEP 09 (2013) 012 [arXiv:1210.6996] [INSPIRE].

    Article  ADS  Google Scholar 

  58. K. Larjo, D.A. Lowe and L. Thorlacius, Black holes without firewalls, Phys. Rev. D 87 (2013) 104018 [arXiv:1211.4620] [INSPIRE].

    ADS  Google Scholar 

  59. E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, arXiv:1211.6913 [INSPIRE].

  60. K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, arXiv:1211.6767 [INSPIRE].

  61. R. Brustein and A.J.M. Medved, work in progress.

  62. J.J. Sakurai, Modern quantum mechanics, revised edition, Addison-Wesley, Reading U.S.A. (1994).

  63. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman, San Francisco U.S.A. (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Brustein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brustein, R., Medved, A. Semiclassical black holes expose forbidden charges and censor divergent densities. J. High Energ. Phys. 2013, 108 (2013). https://doi.org/10.1007/JHEP09(2013)108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)108

Keywords

Navigation