Journal of High Energy Physics

, 2012:10

High-precision scale setting in lattice QCD

Authors

  • Budapest-Marseille-Wuppertal collaboration
    • Bergische Universität Wuppertal
  • Stephan Dürr
    • Bergische Universität Wuppertal
    • Jülich Supercomputing Centre
  • Zoltán Fodor
    • Bergische Universität Wuppertal
    • Jülich Supercomputing Centre
    • Institute for Theoretical PhysicsEötvös University
  • Christian Hoelbling
    • Bergische Universität Wuppertal
  • Sándor D. Katz
    • Institute for Theoretical PhysicsEötvös University
  • Stefan Krieg
    • Bergische Universität Wuppertal
    • Jülich Supercomputing Centre
  • Thorsten Kurth
    • Bergische Universität Wuppertal
  • Laurent Lellouch
    • Centre de Physique Théorique, CNRS, Aix-Marseille U. and U. Sud Toulon-Var
  • Thomas Lippert
    • Bergische Universität Wuppertal
    • Jülich Supercomputing Centre
  • Craig McNeile
    • Bergische Universität Wuppertal
  • Kálmán K. Szabó
    • Bergische Universität Wuppertal
Open AccessArticle

DOI: 10.1007/JHEP09(2012)010

Cite this article as:
Budapest-Marseille-Wuppertal collaboration, Borsányi, S., Dürr, S. et al. J. High Energ. Phys. (2012) 2012: 10. doi:10.1007/JHEP09(2012)010

Abstract

Scale setting is of central importance in lattice QCD. It is required to predict dimensional quantities in physical units. Moreover, it determines the relative lattice spacings of computations performed at different values of the bare coupling, and this is needed for extrapolating results into the continuum. Thus, we calculate a new quantity, w0, for setting the scale in lattice QCD, which is based on the Wilson flow like the scale t0 (M. Luscher, JHEP 08 (2010) 071). It is cheap and straightforward to implement and compute. In particular, it does not involve the delicate fitting of correlation functions at asymptotic times. It typically can be determined on the few per-mil level. We compute its continuum extrapolated value in 2 + 1-flavor QCD for physical and non-physical pion and kaon masses, to allow for mass-independent scale setting even away from the physical mass point. We demonstrate its robustness by computing it with two very different actions (one of them with staggered, the other with Wilson fermions) and by showing that the results agree for physical quark masses in the continuum limit.

Keywords

Lattice QCDLattice Gauge Field Theories
Download to read the full article text

Supplementary material

13130_2012_4694_MOESM1_ESM.c (23 kb)
ESM 1(C 23 kb)
13130_2012_4694_MOESM2_ESM.c (60 kb)
ESM 2(C 59 kb)

Copyright information

© SISSA 2012