Skip to main content
Log in

On the renormalization of multiparton webs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the recently developed diagrammatic approach to soft-gluon exponentiation in multiparton scattering amplitudes, where the exponent is written as a sum of webs — closed sets of diagrams whose colour and kinematic parts are entangled via mixing matrices. A complementary approach to exponentiation is based on the multiplicative renormalizability of intersecting Wilson lines, and their subsequent finite anomalous dimension. Relating this framework to that of webs, we derive renormalization constraints expressing all multiple poles of any given web in terms of lower-order webs. We examine these constraints explicitly up to four loops, and find that they are realised through the action of the web mixing matrices in conjunction with the fact that multiple pole terms in each diagram reduce to sums of products of lower-loop integrals. Relevant singularities of multi-eikonal amplitudes up to three loops are calculated in dimensional regularization using an exponential infrared regulator. Finally, we formulate a new conjecture for web mixing matrices, involving a weighted sum over column entries. Our results form an important step in understanding non-Abelian exponentiation in multiparton amplitudes, and pave the way for higher-loop computations of the soft anomalous dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.P. Korchemsky and A.V. Radyushkin, Loop space formalism and renormalization group for the infrared asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [SPIRES].

    ADS  Google Scholar 

  2. S.V. Ivanov, G.P. Korchemsky and A.V. Radyushkin, Infrared asymptotics of perturbative QCD: contour gauges, Yad. Fiz. 44 (1986) 230 [Sov. J. Nucl. Phys. 44 (1986) 145] [SPIRES].

    Google Scholar 

  3. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    Article  ADS  Google Scholar 

  4. G.P. Korchemsky, Sudakov form-factor in QCD, Phys. Lett. B 220 (1989) 629 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  5. G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett. A 4 (1989) 1257 [SPIRES].

    ADS  Google Scholar 

  6. G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [SPIRES].

    Article  ADS  Google Scholar 

  7. E. Gardi, On the quark distribution in an on-shell heavy quark and its all-order relations with the perturbative fragmentation function, JHEP 02 (2005) 053 [hep-ph/0501257] [SPIRES].

    Article  ADS  Google Scholar 

  8. T. Becher and M. Neubert, Toward a NNLO calculation of the \( \bar{B} \to {X_s}\gamma \) decay rate with a cut on photon energy. II: two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [SPIRES].

    ADS  Google Scholar 

  9. T. Becher and M. Neubert, Toward a NNLO calculation of the \( \bar{B} \to {X_s}\gamma \) decay rate with a cut on photon energy. I: two-loop result for the soft function, Phys. Lett. B 633 (2006) 739 [hep-ph/0512208] [SPIRES].

    ADS  Google Scholar 

  10. I.A. Korchemskaya and G.P. Korchemsky, High-energy scattering in QCD and cross singularities of Wilson loops, Nucl. Phys. B 437 (1995) 127 [hep-ph/9409446] [SPIRES].

    Article  ADS  Google Scholar 

  11. J. Botts and G.F. Sterman, Hard elastic scattering in QCD: leading behavior, Nucl. Phys. B 325 (1989) 62 [SPIRES].

    Article  ADS  Google Scholar 

  12. H. Contopanagos, E. Laenen and G.F. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [SPIRES].

    Article  ADS  Google Scholar 

  13. N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [SPIRES].

    Article  ADS  Google Scholar 

  14. N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys. B 505 (1997) 321 [hep-ph/9705234] [SPIRES].

    Article  ADS  Google Scholar 

  15. N. Kidonakis, Two-loop soft anomalous dimensions with massive and massless quarks, arXiv:0910.0473 [SPIRES].

  16. G.F. Sterman and M.E. Tejeda-Yeomans, Multi-loop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [SPIRES].

    ADS  Google Scholar 

  17. S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [SPIRES].

    ADS  Google Scholar 

  18. S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [SPIRES].

    Article  ADS  Google Scholar 

  19. E. Laenen, L. Magnea and G. Stavenga, On next-to-eikonal corrections to threshold resummation for the Drell-Yan and DIS cross sections, Phys. Lett. B 669 (2008) 173 [arXiv:0807.4412] [SPIRES].

    ADS  Google Scholar 

  20. A. Kyrieleis and M.H. Seymour, The colour evolution of the process qq → qqg, JHEP 01 (2006) 085 [hep-ph/0510089] [SPIRES].

    Article  ADS  Google Scholar 

  21. M. Sjodahl, Color evolution of 2 → 3 processes, JHEP 12 (2008) 083 [arXiv:0807.0555] [SPIRES].

    Article  ADS  Google Scholar 

  22. M.H. Seymour and M. Sjodahl, Symmetry of anomalous dimension matrices explained, JHEP 12 (2008) 066 [arXiv:0810.5756] [SPIRES].

    Article  ADS  Google Scholar 

  23. N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [SPIRES].

    Article  ADS  Google Scholar 

  24. A. Mitov, G.F. Sterman and I. Sung, The massive soft anomalous dimension matrix at two loops, Phys. Rev. D 79 (2009) 094015 [arXiv:0903.3241] [SPIRES].

    ADS  Google Scholar 

  25. T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [arXiv:0904.1021] [Erratum ibid. D 80 (2009) 109901] [SPIRES].

    ADS  Google Scholar 

  26. M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [SPIRES].

    Article  ADS  Google Scholar 

  27. M. Czakon, A. Mitov and G.F. Sterman, Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [SPIRES].

    ADS  Google Scholar 

  28. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [SPIRES].

    Article  ADS  Google Scholar 

  29. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-Abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [SPIRES].

    Article  ADS  Google Scholar 

  30. J.-Y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization structure of gauge theory amplitudes and application to hard scattering processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [SPIRES].

    ADS  Google Scholar 

  31. A. Mitov, G.F. Sterman and I. Sung, Computation of the soft anomalous dimension matrix in coordinate space, Phys. Rev. D 82 (2010) 034020 [arXiv:1005.4646] [SPIRES].

    ADS  Google Scholar 

  32. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Infrared singularities and soft gluon resummation with massive partons, Nucl. Phys. Proc. Suppl. 205 206 (2010) 98 [arXiv:1006.4680] [SPIRES].

    Article  Google Scholar 

  33. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [SPIRES].

    Article  ADS  Google Scholar 

  34. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [SPIRES].

    Article  ADS  Google Scholar 

  35. T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  36. L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [SPIRES].

    Article  ADS  Google Scholar 

  37. L.J. Dixon, Matter dependence of the three-loop soft anomalous dimension matrix, Phys. Rev. D 79 (2009) 091501 [arXiv:0901.3414] [SPIRES].

    ADS  Google Scholar 

  38. L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. I. Bierenbaum, M. Czakon and A. Mitov, The singular behavior of one-loop massive QCD amplitudes with one external soft gluon, arXiv:1107.4384 [SPIRES].

  40. E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [SPIRES].

    Article  ADS  Google Scholar 

  41. G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys. B 281 (1987) 310 [SPIRES].

    Article  ADS  Google Scholar 

  42. S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [SPIRES].

    Article  ADS  Google Scholar 

  43. H. Contopanagos and G.F. Sterman, Principal value resummation, Nucl. Phys. B 419 (1994) 77 [hep-ph/9310313] [SPIRES].

    Article  ADS  Google Scholar 

  44. S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [SPIRES].

    Article  ADS  Google Scholar 

  45. G. Oderda, N. Kidonakis and G.F. Sterman, Resummation for heavy quark production near partonic threshold, hep-ph/9906338 [SPIRES].

  46. N. Kidonakis, G. Oderda and G.F. Sterman, Threshold resummation for dijet cross sections, Nucl. Phys. B 525 (1998) 299 [hep-ph/9801268] [SPIRES].

    Article  ADS  Google Scholar 

  47. E. Laenen, G. Oderda and G.F. Sterman, Resummation of threshold corrections for single particle inclusive cross-sections, Phys. Lett. B 438 (1998) 173 [hep-ph/9806467] [SPIRES].

    ADS  Google Scholar 

  48. E. Laenen, G.F. Sterman and W. Vogelsang, Recoil and threshold corrections in short distance cross-sections, Phys. Rev. D 63 (2001) 114018 [hep-ph/0010080] [SPIRES].

    ADS  Google Scholar 

  49. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [SPIRES].

    ADS  Google Scholar 

  50. S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The resummation of soft gluon in hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [SPIRES].

    Article  ADS  Google Scholar 

  51. E. Gardi and G. Grunberg, A dispersive approach to Sudakov resummation, Nucl. Phys. B 794 (2008) 61 [arXiv:0709.2877] [SPIRES].

    Article  ADS  Google Scholar 

  52. J.R. Andersen and E. Gardi, Inclusive spectra in charmless semileptonic B decays by dressed gluon exponentiation, JHEP 01 (2006) 097 [hep-ph/0509360] [SPIRES].

    Article  ADS  Google Scholar 

  53. E. Gardi and J. Rathsman, The thrust and heavy-jet mass distributions in the two-jet region, Nucl. Phys. B 638 (2002) 243 [hep-ph/0201019] [SPIRES].

    Article  ADS  Google Scholar 

  54. E. Gardi and J. Rathsman, Renormalon resummation and exponentiation of soft and collinear gluon radiation in the thrust distribution, Nucl. Phys. B 609 (2001) 123 [hep-ph/0103217] [SPIRES].

    Article  ADS  Google Scholar 

  55. M. Cacciari and E. Gardi, Heavy-quark fragmentation, Nucl. Phys. B 664 (2003) 299 [hep-ph/0301047] [SPIRES].

    Article  ADS  Google Scholar 

  56. E. Gardi and R.G. Roberts, The interplay between Sudakov resummation, renormalons and higher twist in deep inelastic scattering, Nucl. Phys. B 653 (2003) 227 [hep-ph/0210429] [SPIRES].

    Article  ADS  Google Scholar 

  57. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].

    Article  ADS  Google Scholar 

  58. T. Becher, M. Neubert and G. Xu, Dynamical threshold enhancement and resummation in Drell-Yan production, JHEP 07 (2008) 030 [arXiv:0710.0680] [SPIRES].

    Article  ADS  Google Scholar 

  59. T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [SPIRES].

    Article  ADS  Google Scholar 

  60. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].

    Article  ADS  Google Scholar 

  61. G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Transverse-momentum resummation: a perturbative study of Z production at the Tevatron, Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [SPIRES].

    Article  ADS  Google Scholar 

  62. Z.-B. Kang and J.-W. Qiu, QCD resummation for heavy quarkonium production in high energy collisions, AIP Conf. Proc. 1056 (2008) 170 [SPIRES].

    Article  ADS  Google Scholar 

  63. A. Idilbi, C. Kim and T. Mehen, Factorization and resummation for single color-octet scalar production at the LHC, Phys. Rev. D 79 (2009) 114016 [arXiv:0903.3668] [SPIRES].

    ADS  Google Scholar 

  64. L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold resummation for di-hadron production in hadronic collisions, Phys. Rev. D 80 (2009) 074016 [arXiv:0907.1234] [SPIRES].

    ADS  Google Scholar 

  65. S. Moch and A. Vogt, Threshold resummation of the structure function F L , JHEP 04 (2009) 081 [arXiv:0902.2342] [SPIRES].

    Article  ADS  Google Scholar 

  66. S. Moch and A. Vogt, Higher-order threshold resummation for semi-inclusive e + e annihilation, Phys. Lett. B 680 (2009) 239 [arXiv:0908.2746] [SPIRES].

    ADS  Google Scholar 

  67. S. Mantry and F. Petriello, Factorization and resummation of Higgs boson differential distributions in soft-collinear effective theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [SPIRES].

    ADS  Google Scholar 

  68. W. Beenakker et al., Soft gluon resummation for squark and gluino pair-production at hadron colliders, arXiv:1001.3123 [SPIRES].

  69. M. Beneke, P. Falgari and C. Schwinn, Soft and Coulomb gluon resummation in squark-antisquark production at the LHC, PoS(RADCOR2009)012 [arXiv:1001.4627] [SPIRES].

  70. A. Papaefstathiou, J.M. Smillie and B.R. Webber, Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders, JHEP 04 (2010) 084 [arXiv:1002.4375] [SPIRES].

    Article  ADS  Google Scholar 

  71. Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [SPIRES].

    Article  ADS  Google Scholar 

  72. S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  73. S.B. Giddings, M. Schmidt-Sommerfeld and J.R. Andersen, High energy scattering in gravity and supergravity, Phys. Rev. D 82 (2010) 104022 [arXiv:1005.5408] [SPIRES].

    ADS  Google Scholar 

  74. L.V. Bork, D.I. Kazakov, G.S. Vartanov and A.V. Zhiboedov, Construction of infrared finite observables in N = 4 super Yang-Mills theory, Phys. Rev. D 81 (2010) 105028 [arXiv:0911.1617] [SPIRES].

    ADS  Google Scholar 

  75. S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR behavior in N = 8 supergravity, Nucl. Phys. B 805 (2008) 40 [arXiv:0805.2347] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  76. J.F. Donoghue and T. Torma, Infrared behavior of graviton-graviton scattering, Phys. Rev. D 60 (1999) 024003 [hep-th/9901156] [SPIRES].

    ADS  Google Scholar 

  77. D.C. Dunbar and P.S. Norridge, Infinities within graviton scattering amplitudes, Class. Quant. Grav. 14 (1997) 351 [hep-th/9512084] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  78. S.G. Naculich and H.J. Schnitzer, IR divergences and Regge limits of subleading-color contributions to the four-gluon amplitude in N = 4 SYM theory, JHEP 10 (2009) 048 [arXiv:0907.1895] [SPIRES].

    Article  ADS  Google Scholar 

  79. S.G. Naculich, H. Nastase and H.J. Schnitzer, Subleading-color contributions to gluon-gluon scattering in N = 4 SYM theory and relations to N = 8 supergravity, JHEP 11 (2008) 018 [arXiv:0809.0376] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  80. S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering amplitudes, JHEP 05 (2011) 087 [arXiv:1101.1524] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  81. C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [SPIRES].

    Article  ADS  Google Scholar 

  82. A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  83. I.Y. Arefeva, Quantum contour field equations, Phys. Lett. B 93 (1980) 347 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  84. V.S. Dotsenko and S.N. Vergeles, Renormalizability of phase factors in the non-Abelian gauge theory, Nucl. Phys. B 169 (1980) 527 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  85. R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24 (1981) 879 [SPIRES].

    ADS  Google Scholar 

  86. J.G.M. Gatheral, Exponentiation of eikonal cross-sections in non-Abelian gauge theories, Phys. Lett. B 133 (1983) 90 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  87. J. Frenkel and J.C. Taylor, Non-Abelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [SPIRES].

    Article  ADS  Google Scholar 

  88. G.F. Sterman, Infrared divergences in perturbative QCD (talk), AIP Conf. Proc. 74 (1981) 22 [SPIRES].

    Article  ADS  Google Scholar 

  89. E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick, JHEP 11 (2010) 155 [arXiv:1008.0098] [SPIRES].

    Article  ADS  Google Scholar 

  90. A. Mitov, G. Sterman and I. Sung, Diagrammatic exponentiation for products of Wilson lines, Phys. Rev. D 82 (2010) 096010 [arXiv:1008.0099] [SPIRES].

    ADS  Google Scholar 

  91. E. Gardi and C.D. White, General properties of multiparton webs: proofs from combinatorics, JHEP 03 (2011) 079 [arXiv:1102.0756] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  92. E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C32N5-6 (2009) 137 [arXiv:0908.3273] [SPIRES].

    Google Scholar 

  93. T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [SPIRES].

    Article  ADS  Google Scholar 

  94. L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [SPIRES].

    ADS  Google Scholar 

  95. C.F. Berger, Soft gluon exponentiation and resummation, hep-ph/0305076 [SPIRES].

  96. W. Miller, Symmetry groups and their applications, Academic Press Inc., U.S.A. (1973).

    Google Scholar 

  97. J. Fuchs and C. Schweigert, Symmetries, Lie algebras and representations: a graduate course for physicists, section 9.8, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1997) [SPIRES].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. White.

Additional information

ArXiv ePrint: 1108.1357

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardi, E., Smillie, J.M. & White, C.D. On the renormalization of multiparton webs. J. High Energ. Phys. 2011, 114 (2011). https://doi.org/10.1007/JHEP09(2011)114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)114

Keywords

Navigation