Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene
 Gordon W. Semenoff,
 Fei Zhou
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
We study the realization in a model of graphene of the phenomenon whereby the tendency of gaugefield mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electronelectron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2) × U(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particlehole symmetry.
 Semenoff, GW (1984) Condensed matter simulation of a threedimensional anomaly. Phys. Rev. Lett. 53: pp. 2449 CrossRef
 Novoselov, KS (2004) Electric field effect in atomically thin carbon films. Science 306: pp. 666 CrossRef
 Novoselov, KS (2005) Twodimensional gas of massless Dirac fermions in graphene. Nature 438: pp. 197 CrossRef
 Novoselov, KS (2005) Twodimensional atomic crystals. PNAS 102: pp. 10451 CrossRef
 Geim, AK, Novoselov, KS (2007) The rise of graphene. Nat. Mater. 6: pp. 183 CrossRef
 Novoselov, KS (2007) Graphene: mind the gap. Nat. Mater. 6: pp. 720 CrossRef
 Zhou, SY (2007) Substrateinduced bandgap opening in epitaxial graphene. Nat. Mater. 6: pp. 770 CrossRef
 Katsnelson, MI (2007) Graphene: carbon in two dimensions. Materials Today 10: pp. 20 CrossRef
 Zhang, Y, Tan, YW, Stormer, HL, Kim, P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438: pp. 201 CrossRef
 Gusynin, VP, Sharapov, SG (2005) Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95: pp. 146801 CrossRef
 Peres, NMR, Guinea, F, Castro Neto, AH (2006) Electronic properties of disordered twodimensional carbon. Phys. Rev. Lett. 73: pp. 125411
 Khveshchenko, DV (2001) Magneticfieldinduced insulating behavior in highly oriented pyrolitic graphite. Phys. Rev. Lett. 87: pp. 206401 CrossRef
 Gorbar, EV, Gusynin, VP, Miransky, VA, Shovkovy, IA (2002) Magnetic field driven metalinsulator phase transition in planar systems. Phys. Rev. B 66: pp. 045108
 Herbut, IF (2006) Interactions and phase transitions on graphene’s honeycomb lattice. Phys. Rev. Lett. 97: pp. 146401 CrossRef
 Son, DT (2007) critical point in graphene approached in the limit of infinitely strong Coulomb interaction. Phys. Rev. B 75: pp. 235423
 Drut, JE, Son, DT (2008) Renormalization group flow of quartic perturbations in graphene: Strong coupling and largeN limits. Phys. Rev. B 77: pp. 075115
 Castro Neto, AH (2009) Pauling’s dreams for graphene. Physics 2: pp. 30 CrossRef
 Herbut, IF, Juricic, V, Roy, B (2009) Theory of interacting electrons on the honeycomb lattice. Phys. Rev. B 79: pp. 085116
 Herbut, IF, Juricic, V, Vafek, O (2009) Relativistic Mott criticality in graphene. Phys. Rev. B 80: pp. 075432
 Juricic, V, Herbut, IF, Semenoff, GW (2009) Coulomb interaction at the metalinsulator critical point in graphene. Phys. Rev. B 80: pp. 081405
 Armour, W, Hands, S, Strouthos, C (2010) Monte Carlo simulation of the semimetalinsulator phase transition in monolayer graphene. Phys. Rev. B 81: pp. 125105
 W. Armour, S. Hands and C. Strouthos, Lattice simulations near the semimetalinsulator phase transition of graphene, arXiv:0908.0118 [SPIRES].
 Hands, S, Strouthos, C (2009) Quantum phase transition in a graphene model. J. Phys. Conf. Ser. 150: pp. 042191 CrossRef
 Hands, S, Strouthos, C (2008) Quantum critical behaviour in a graphenelike model. Phys. Rev. B 78: pp. 165423
 Drut, JE, Lahde, TA (2009) Critical exponents of the semimetalinsulator transition in graphene: a Monte Carlo study. Phys. Rev. B 79: pp. 241405
 J.E. Drut, T.A. Lahde and L. Suoranta, Firstorder chiral transition in the compact lattice theory of graphene and the case for improved actions, arXiv:1002.1273 [SPIRES].
 J.E. Drut and T.A. Lahde, Lattice field theory simulations of graphene, arXiv:0901.0584 [SPIRES].
 J.E. Drut and T.A. Lahde, Is graphene in vacuum an insulator?, arXiv:0807.0834 [SPIRES].
 J.E. Drut, T.A. Lahde and E. Tolo, Signatures of a gap in the conductivity of graphene, arXiv:1005.5089 [SPIRES].
 J.E. Drut, T.A. Lahde and E. Tolo, Graphene: from materials science to particle physics, PoS LATTICE2010 (2010) 006 [arXiv:1011.0643] [SPIRES].
 Zhang, Y (2006) Landaulevel splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96: pp. 136806 CrossRef
 Abanin, DA (2007) Dissipative quantum Hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98: pp. 196806 CrossRef
 Jiang, Z (2007) Quantum Hall states near the chargeneutral Dirac point in graphene. Phys. Rev. Lett. 99: pp. 106802 CrossRef
 Giesbers, AJM (2007) QuantumHall activation gaps in graphene. Phys. Rev. Lett. 99: pp. 206803 CrossRef
 Checkelsky, JG, Li, L, Ong, NP (2008) Zeroenergy state in graphene in a high magnetic field. Phys. Rev. Lett. 100: pp. 206801 CrossRef
 Checkelsky, JG, Li, L, Ong, NP (2009) Divergent resistance at the Dirac point in graphene: evidence for a transition in a high magnetic field. Phys. Rev. B 79: pp. 115434
 Zhang, L (2009) Breakdown of the N = 0 quantum Hall state in graphene: two insulating regimes. Phys. Rev. B 80: pp. 241412
 Giesbers, AJM (2009) Gap opening in the zeroth Landau level of graphene. Phys. Rev. B 80: pp. 201403(R)
 Xu, I, Skachko, F, Duerr, A, Luican, EY (2009) Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462: pp. 192 CrossRef
 Bolotin, KI (2009) Observation of the fractional quantum Hall effect in graphene. Nature 462: pp. 196 CrossRef
 Abanin, DA (2010) Fractional quantum Hall effect in suspended graphene: transport coefficients and electron interaction strength. Phys. Rev. B 81: pp. 115410
 C.R. Dean et al., Multicomponent fractional quantum Hall effect in graphene, arXiv:1010.1179.
 Ghahari, F (2011) Measurement of the ν = 1/3 fractional quantum Hall energy gap in suspended graphene. Phys. Rev. Lett. 106: pp. 046801 CrossRef
 Klimenko, KG (1992) Threedimensional GrossNeveu model in an external magnetic field. Theor. Math. Phys. 89: pp. 1161 CrossRef
 Klimenko, KG (1992) Threedimensional GrossNeveu model at nonzero temperature and in an external magnetic field. Theor. Math. Phys. 90: pp. 1 CrossRef
 Gusynin, VP, Miransky, VA, Shovkovy, IA (1994) Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)dimensions. Phys. Rev. Lett. 73: pp. 3499 CrossRef
 Gusynin, VP, Miransky, VA, Shovkovy, IA (1995) Dynamical flavor symmetry breaking by a magnetic field in (2 + 1)dimensions. Phys. Rev. D 52: pp. 4718
 Gusynin, VP, Miransky, VA, Shovkovy, IA (1996) Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl. Phys. B 462: pp. 249 CrossRef
 Gusynin, VP, Miransky, VA, Sharapov, SG, Shovkovy, IA (2006) Excitonic gap, phase transition and quantum Hall effect in graphene. Phys. Rev. B 74: pp. 195429
 Herbut, IF (2008) Pseudomagnetic catalysis of the timereversal symmetry breaking in graphene. Phys. Rev. B 78: pp. 205433
 Gorbar, EV, Gusynin, VP, Miransky, VA, Shovkovy, IA (2008) Dynamics in the quantum Hall effect and the phase diagram of graphene. Phys. Rev. B 78: pp. 085437
 Ezawa, M (2007) Intrinsic Zeeman effect in graphene. J. Phys. Soc. Jpn. 76: pp. 094701 CrossRef
 Semenoff, GW, Shovkovy, IA, Wijewardhana, LCR (1998) Phase transition induced by a magnetic field. Mod. Phys. Lett. A 13: pp. 1143 CrossRef
 Gusynin, VP, Sharapov, SG, Carbotte, JP (2007) AC conductivity of graphene: from tightbinding model to 2 + 1dimensional quantum electrodynamics. Int. J. Mod. Phys. B 21: pp. 4611
 Nomura, K, MacDonald, AH (2006) Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96: pp. 256602 CrossRef
 S.M. Girvin and A.H. MacDonald, Multicomponent quantum Hall systems: the sum of their parts and more, in Perspectives in Quantum Hall Effects, S. Das Sarma and A. Pinczuk eds., John Wiley and Soons, New York U.S.A. (1997).
 Yang, K, Das Sarma, S, MacDonald, AH (2006) Collective modes and skyrmion excitations in graphene SU(4) quantum Hall ferromagnets. Phys. Rev. B 74: pp. 075423
 Niemi, AJ, Semenoff, GW (1983) Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional spacetimes. Phys. Rev. Lett. 51: pp. 2077 CrossRef
 Redlich, AN (1984) Parity violation and gauge noninvariance of the effective gauge field action in threedimensions. Phys. Rev. D 29: pp. 2366
 Redlich, AN (1984) Gauge noninvariance and parity nonconservation of threedimensional fermions. Phys. Rev. Lett. 52: pp. 18 CrossRef
 Vafa, C, Witten, E (1984) Restrictions on symmetry breaking in vectorlike gauge theories. Nucl. Phys. B 234: pp. 173 CrossRef
 Ryu, S, Mudry, C, Hou, CY, Chamon, C (2009) Masses in graphenelike twodimensional electronic systems: topological defects in order parameters and their fractional exchange statistics. Phys. Rev. B 80: pp. 205319
 Tanaka, A, Hu, X (2005) Manybody spin Berry phases emerging from the πflux state: competition between antiferromagnetism and the valencebondsolid state. Phys. Rev. Lett. 95: pp. 036402 CrossRef
 Tanaka, A, Hu, X (2006) Effective field theory with a θvacua structure for twodimensional spin systems. Phys. Rev. B 74: pp. 140407
 P. Ghaemi, S. Ryu, D.H. Lee, The quantum valley Hall effect in proximityinduced superconducting graphene: an experimental window for deconfined quantum criticality, arXiv:0704.2234.
 Herbut, IF (2007) Zeroenergy states and fragmentation of spin in the easy plane antiferromagnet on honeycomb lattice. Phys. Rev. Lett. 99: pp. 206404 CrossRef
 Gonzalez, J, Guinea, F, Vozmediano, MAH (1994) NonFermi liquid behavior of electrons in the half filled honeycomb lattice (A Renormalization group approach). Nucl. Phys. B 424: pp. 595 CrossRef
 J. Gonzalez, F. Guinea and M.A.H. Vozmediano, MarginalFermiliquid behavior from twodimensional Coulomb interaction, Phys. Rev. B 59 (1999) 2474(R) [condmat/0302164].
 Leal, H, Khveshchenko, DV (2004) Excitonic instability in twodimensional degenerate semimetals. Nucl. Phys. B 687: pp. 323
 Khveshchenko, DV (2006) Coulombinteracting Dirac fermions in disordered graphene. Phys. Rev. B 74: pp. 161402
 Mishchenko, EG (2007) Effect of electronelectron interactions on the conductivity of clean graphene. Phys. Rev. Lett. 98: pp. 216801 CrossRef
 Sheehy, DE, Schmalian, J (2007) Quantum critical scaling in graphene. Phys. Rev. Lett. 99: pp. 226803 CrossRef
 Vafek, O, Case, MJ (2008) Renormalization group approach to twodimensional Coulomb interacting Dirac fermions with random gauge potential. Phys. Rev. B 77: pp. 033410
 Alicea, J, Fisher, MPA (2006) Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes. Phys. Rev. B 74: pp. 075422
 M. Kharitonov, Phase diagram for the ν = 0 quantum Hall state in monolayer graphene, SPIRES.
 Jackiw, R, Rebbi, C (1976) Solitons with fermion number 1/2. Phys. Rev. D 13: pp. 3398
 Niemi, AJ, Semenoff, GW (1986) Fermion number fractionization in quantum field theory. Phys. Rept. 135: pp. 99 CrossRef
 Coleman, SR, Hill, BR (1985) No more corrections to the topological mass term in QED in threedimensions. Phys. Lett. B 159: pp. 184
 Semenoff, GW, Sodano, P, Wu, YS (1989) Renormalization of the statistics parameter in threedimensional electrodynamics. Phys. Rev. Lett. 62: pp. 715 CrossRef
 Title
 Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene
 Journal

Journal of High Energy Physics
2011:37
 Online Date
 July 2011
 DOI
 10.1007/JHEP07(2011)037
 Online ISSN
 10298479
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Keywords

 Field Theories in Lower Dimensions
 Spontaneous Symmetry Breaking
 Industry Sectors
 Authors

 Gordon W. Semenoff ^{(1)}
 Fei Zhou ^{(1)}
 Author Affiliations

 1. Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada