Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene Authors Gordon W. Semenoff Department of Physics and Astronomy University of British Columbia Fei Zhou Department of Physics and Astronomy University of British Columbia Article

First Online: 07 July 2011 Received: 06 May 2011 Accepted: 29 June 2011 DOI :
10.1007/JHEP07(2011)037

Cite this article as: Semenoff, G.W. & Zhou, F. J. High Energ. Phys. (2011) 2011: 37. doi:10.1007/JHEP07(2011)037
Abstract
We study the realization in a model of graphene of the phenomenon whereby the tendency of gauge-field mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electron-electron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2) × U(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)-valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particle-hole symmetry.

Keywords
Field Theories in Lower Dimensions
Spontaneous Symmetry Breaking

References [1]

G.W. Semenoff,

Condensed matter simulation of a three-dimensional anomaly ,

Phys. Rev. Lett.
53 (1984) 2449 [

SPIRES ].

MathSciNet ADS CrossRef [2]

K.S. Novoselov et al. ,

Electric field effect in atomically thin carbon films ,

Science
306 (2004) 666.

ADS CrossRef [3]

K.S. Novoselov et al.,

Two-dimensional gas of massless Dirac fermions in graphene ,

Nature
438 (2005) 197 [

cond-mat/0509330 ] [

SPIRES ].

ADS CrossRef [4]

K. S. Novoselov et al.,

Two-dimensional atomic crystals ,

PNAS
102 (2005) 10451.

ADS CrossRef [5]

A.K. Geim and K.S. Novoselov,

The rise of graphene ,

Nat. Mater.
6 (2007) 183.

ADS CrossRef [6]

K.S. Novoselov,

Graphene: mind the gap ,

Nat. Mater.
6 (2007) 720.

ADS CrossRef [7]

S.Y. Zhou et al. ,

Substrate-induced bandgap opening in epitaxial graphene ,

Nat. Mater.
6 (2007) 770.

ADS CrossRef [8]

M.I. Katsnelson,

Graphene: carbon in two dimensions ,

Materials Today
10 (2007) 20.

CrossRef [9]

Y. Zhang, Y.-W. Tan, H.L. Stormer and P. Kim,

Experimental observation of the quantum Hall effect and Berry’s phase in graphene ,

Nature
438 (2005) 201.

ADS CrossRef [10]

V.P. Gusynin and S.G. Sharapov,

Unconventional integer quantum Hall effect in graphene ,

Phys. Rev. Lett.
95 (2005) 146801 [

cond-mat/0506575 ] [

SPIRES ].

ADS CrossRef [11]

N.M.R. Peres, F. Guinea, A.H. Castro Neto,

Electronic properties of disordered two-dimensional carbon ,

Phys. Rev. Lett.
73 (2006) 125411 [

cond-mat/0512091 ].

ADS [12]

D.V. Khveshchenko,

Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite ,

Phys. Rev. Lett.
87 (2001) 206401 [

SPIRES ].

ADS CrossRef [13]

E.V. Gorbar, V.P. Gusynin, V.A. Miransky and I.A. Shovkovy,

Magnetic field driven metal-insulator phase transition in planar systems ,

Phys. Rev.
B 66 (2002) 045108 [

cond-mat/0202422 ] [

SPIRES ].

ADS [14]

I.F. Herbut,

Interactions and phase transitions on graphene’s honeycomb lattice ,

Phys. Rev. Lett.
97 (2006) 146401 [

cond-mat/0606195 ] [

SPIRES ].

ADS CrossRef [15]

D.T. Son,

critical point in graphene approached in the limit of infinitely strong Coulomb interaction ,

Phys. Rev.
B 75 (2007) 235423 [

cond-mat/0701501 ].

ADS [16]

J.E. Drut and D.T. Son,

Renormalization group flow of quartic perturbations in graphene: Strong coupling and large-N limits ,

Phys. Rev.
B 77 (2008) 075115 [

arXiv:0710.1315 ] [

SPIRES ].

ADS [17]

A.H. Castro Neto,

Pauling’s dreams for graphene ,

Physics
2 (2009) 30.

CrossRef [18]

I.F. Herbut, V. Juricic and B. Roy,

Theory of interacting electrons on the honeycomb lattice ,

Phys. Rev.
B 79 (2009) 085116 [

arXiv:0811.0610 ] [

SPIRES ].

ADS [19]

I.F. Herbut, V. Juricic and O. Vafek,

Relativistic Mott criticality in graphene ,

Phys. Rev.
B 80 (2009) 075432 [

arXiv:0904.1019 ] [

SPIRES ].

ADS [20]

V. Juricic, I.F. Herbut and G.W. Semenoff,

Coulomb interaction at the metal-insulator critical point in graphene ,

Phys. Rev.
B 80 (2009) 081405 [

arXiv:0906.3513 ] [

SPIRES ].

ADS [21]

W. Armour, S. Hands and C. Strouthos,

Monte Carlo simulation of the semimetal-insulator phase transition in monolayer graphene ,

Phys. Rev.
B 81 (2010) 125105 [

arXiv:0910.5646 ] [

SPIRES ].

ADS [22]

W. Armour, S. Hands and C. Strouthos,

Lattice simulations near the semimetal-insulator phase transition of graphene ,

arXiv:0908.0118 [

SPIRES ].

[23]

S. Hands and C. Strouthos,

Quantum phase transition in a graphene model ,

J. Phys. Conf. Ser.
150 (2009) 042191 [

arXiv:0808.2720 ] [

SPIRES ].

ADS CrossRef [24]

S. Hands and C. Strouthos,

Quantum critical behaviour in a graphene-like model ,

Phys. Rev.
B 78 (2008) 165423 [

arXiv:0806.4877 ] [

SPIRES ].

ADS [25]

J.E. Drut and T.A. Lahde,

Critical exponents of the semimetal-insulator transition in graphene: a Monte Carlo study ,

Phys. Rev.
B 79 (2009) 241405 [

arXiv:0905.1320 ] [

SPIRES ].

ADS [26]

J.E. Drut, T.A. Lahde and L. Suoranta,

First-order chiral transition in the compact lattice theory of graphene and the case for improved actions ,

arXiv:1002.1273 [

SPIRES ].

[27]

J.E. Drut and T.A. Lahde,

Lattice field theory simulations of graphene ,

arXiv:0901.0584 [

SPIRES ].

[28]

J.E. Drut and T.A. Lahde,

Is graphene in vacuum an insulator? ,

arXiv:0807.0834 [

SPIRES ].

[29]

J.E. Drut, T.A. Lahde and E. Tolo,

Signatures of a gap in the conductivity of graphene ,

arXiv:1005.5089 [

SPIRES ].

[30]

J.E. Drut, T.A. Lahde and E. Tolo,

Graphene: from materials science to particle physics ,

PoS LATTICE2010 (2010) 006 [

arXiv:1011.0643 ] [

SPIRES ].

[31]

Y. Zhang et al.,

Landau-level splitting in graphene in high magnetic fields ,

Phys. Rev. Lett.
96 (2006) 136806 [

cond-mat/0602649 ].

ADS CrossRef [32]

D.A. Abanin et al.,

Dissipative quantum Hall effect in graphene near the Dirac point ,

Phys. Rev. Lett.
98 (2007) 196806 [

cond-mat/0702125 ].

ADS CrossRef [33]

Z. Jiang et al.,

Quantum Hall states near the charge-neutral Dirac point in graphene ,

Phys. Rev. Lett.
99 (2007) 106802 [

arXiv:0705.1102 ].

ADS CrossRef [34]

A.J.M. Giesbers et al.,

Quantum-Hall activation gaps in graphene ,

Phys. Rev. Lett.
99 (2007) 206803 [

arXiv:1009.5485 ].

ADS CrossRef [35]

J.G. Checkelsky, L. Li and N.P. Ong,

Zero-energy state in graphene in a high magnetic field ,

Phys. Rev. Lett.
100 (2008) 206801 [

arXiv:0708.1959 ].

ADS CrossRef [36]

J.G. Checkelsky, L. Li, N.P. Ong,

Divergent resistance at the Dirac point in graphene: evidence for a transition in a high magnetic field ,

Phys. Rev.
B 79 (2009) 115434 [

arXiv:0808.0906 ].

ADS [37]

L. Zhang et al.,

Breakdown of the N = 0

quantum Hall state in graphene: two insulating regimes ,

Phys. Rev.
B 80 (2009) 241412 [

arXiv:0904.1996 ].

ADS [38]

A.J.M. Giesbers et al.,

Gap opening in the zeroth Landau level of graphene ,

Phys. Rev.
B 80 (2009) 201403(R) [

arXiv:0904.0948 ].

ADS [39]

Xu Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei,

Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene ,

Nature
462 (2009) 192.

ADS CrossRef [40]

K.I. Bolotin et al.,

Observation of the fractional quantum Hall effect in graphene ,

Nature
462 (2009) 196.

ADS CrossRef [41]

D.A. Abanin et al.,

Fractional quantum Hall effect in suspended graphene: transport coefficients and electron interaction strength ,

Phys. Rev.
B 81 (2010) 115410 [

arXiv:0912.1134 ].

ADS [42]

C.R. Dean et al.,

Multicomponent fractional quantum Hall effect in graphene ,

arXiv:1010.1179 .

[43]

F. Ghahari et al.,

Measurement of the ν = 1/3

fractional quantum Hall energy gap in suspended graphene ,

Phys. Rev. Lett.
106 (2011) 046801.

ADS CrossRef [44]

K.G. Klimenko,

Three-dimensional Gross-Neveu model in an external magnetic field ,

Theor. Math. Phys.
89 (1992) 1161 [

SPIRES ].

MathSciNet CrossRef [45]

K.G. Klimenko,

Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field ,

Theor. Math. Phys.
90 (1992) 1 [

SPIRES ].

MathSciNet CrossRef [46]

V.P. Gusynin, V.A. Miransky and I.A. Shovkovy,

Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions ,

Phys. Rev. Lett.
73 (1994) 3499 [

hep-ph/9405262 ] [

SPIRES ].

ADS CrossRef [47]

V.P. Gusynin, V.A. Miransky and I.A. Shovkovy,

Dynamical flavor symmetry breaking by a magnetic field in (2 + 1)

-dimensions ,

Phys. Rev.
D 52 (1995) 4718 [

hep-th/9407168 ] [

SPIRES ].

ADS [48]

V.P. Gusynin, V.A. Miransky and I.A. Shovkovy,

Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field ,

Nucl. Phys.
B 462 (1996) 249 [

hep-ph/9509320 ] [

SPIRES ].

ADS CrossRef [49]

V.P. Gusynin, V.A. Miransky, S.G. Sharapov and I.A. Shovkovy,

Excitonic gap, phase transition and quantum Hall effect in graphene ,

Phys. Rev.
B 74 (2006) 195429 [

cond-mat/0605348 ] [

SPIRES ].

ADS [50]

I.F. Herbut,

Pseudomagnetic catalysis of the time-reversal symmetry breaking in graphene ,

Phys. Rev.
B 78 (2008) 205433 [

arXiv:0804.3594 ].

ADS [51]

E.V. Gorbar, V.P. Gusynin, V.A. Miransky and I.A. Shovkovy,

Dynamics in the quantum Hall effect and the phase diagram of graphene ,

Phys. Rev.
B 78 (2008) 085437 [

arXiv:0806.0846 ] [

SPIRES ].

ADS [52]

M. Ezawa,

Intrinsic Zeeman effect in graphene ,

J. Phys. Soc. Jpn.
76 (2007) 094701 [

SPIRES ].

ADS CrossRef [53]

G.W. Semenoff, I.A. Shovkovy and L.C.R. Wijewardhana,

Phase transition induced by a magnetic field ,

Mod. Phys. Lett.
A 13 (1998) 1143 [

hep-ph/9803371 ] [

SPIRES ].

ADS CrossRef [54]

V.P. Gusynin, S.G. Sharapov and J.P. Carbotte,

AC conductivity of graphene: from tight-binding model to 2 + 1

-dimensional quantum electrodynamics ,

Int. J. Mod. Phys.
B 21 (2007) 4611 [

arXiv:0706.3016 ] [

SPIRES ].

ADS [55]

K. Nomura, A.H. MacDonald,

Quantum Hall ferromagnetism in graphene ,

Phys. Rev. Lett.
96 (2006) 256602 [

cond-mat/0604113 ].

ADS CrossRef [56]

S.M. Girvin and A.H. MacDonald, Multicomponent quantum Hall systems: the sum of their parts and more , in Perspectives in Quantum Hall Effects , S. Das Sarma and A. Pinczuk eds., John Wiley and Soons, New York U.S.A. (1997).

[57]

K. Yang, S. Das Sarma and A.H. MacDonald,

Collective modes and skyrmion excitations in graphene SU(4)

quantum Hall ferromagnets ,

Phys. Rev.
B 74 (2006) 075423.

ADS [58]

A.J. Niemi and G.W. Semenoff,

Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times ,

Phys. Rev. Lett.
51 (1983) 2077 [

SPIRES ].

MathSciNet ADS CrossRef [59]

A.N. Redlich,

Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions ,

Phys. Rev.
D 29 (1984) 2366 [

SPIRES ].

MathSciNet ADS [60]

A.N. Redlich,

Gauge noninvariance and parity nonconservation of three-dimensional fermions ,

Phys. Rev. Lett.
52 (1984) 18 [

SPIRES ].

MathSciNet ADS CrossRef [61]

C. Vafa and E. Witten,

Restrictions on symmetry breaking in vector-like gauge theories ,

Nucl. Phys.
B 234 (1984) 173 [

SPIRES ].

MathSciNet ADS CrossRef [62]

S. Ryu, C. Mudry, C.-Y. Hou, C. Chamon,

Masses in graphenelike two-dimensional electronic systems: topological defects in order parameters and their fractional exchange statistics ,

Phys. Rev.
B 80 (2009) 205319.

ADS [63]

A. Tanaka, X. Hu,

Many-body spin Berry phases emerging from the π

-flux state: competition between antiferromagnetism and the valence-bond-solid state ,

Phys. Rev. Lett.
95 (2005) 036402.

ADS CrossRef [64]

A. Tanaka, X. Hu,

Effective field theory with a θ

-vacua structure for two-dimensional spin systems ,

Phys. Rev.
B 74 (2006) 140407.

ADS [65]

P. Ghaemi, S. Ryu, D.-H. Lee,

The quantum valley Hall effect in proximity-induced superconducting graphene: an experimental window for deconfined quantum criticality ,

arXiv:0704.2234 .

[66]

I.F. Herbut,

Zero-energy states and fragmentation of spin in the easy- plane antiferromagnet on honeycomb lattice ,

Phys. Rev. Lett.
99 (2007) 206404 [

arXiv:0704.2234 ] [

SPIRES ].

ADS CrossRef [67]

J. Gonzalez, F. Guinea and M.A.H. Vozmediano,

NonFermi liquid behavior of electrons in the half filled honeycomb lattice (A Renormalization group approach) ,

Nucl. Phys.
B 424 (1994) 595 [

hep-th/9311105 ] [

SPIRES ].

ADS CrossRef [68]

J. Gonzalez, F. Guinea and M.A.H. Vozmediano,

Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction ,

Phys. Rev.
B 59 (1999) 2474(R) [

cond-mat/0302164 ].

[69]

H. Leal and D.V. Khveshchenko,

Excitonic instability in two-dimensional degenerate semimetals ,

Nucl. Phys.
B 687 (2004) 323 [

cond-mat/0302164 ] [

SPIRES ].

ADS [70]

D.V. Khveshchenko,

Coulomb-interacting Dirac fermions in disordered graphene ,

Phys. Rev.
B 74 (2006) 161402 [

cond-mat/0612651 ].

ADS [71]

E.G. Mishchenko,

Effect of electron-electron interactions on the conductivity of clean graphene ,

Phys. Rev. Lett.
98 (2007) 216801 [

cond-mat/0604601 ].

ADS CrossRef [72]

D.E. Sheehy, J. Schmalian,

Quantum critical scaling in graphene ,

Phys. Rev. Lett.
99 (2007) 226803.

ADS CrossRef [73]

O. Vafek, M.J. Case,

Renormalization group approach to two-dimensional Coulomb interacting Dirac fermions with random gauge potential ,

Phys. Rev.
B 77 (2008) 033410 [

arXiv:1103.6285 ].

ADS [74]

J. Alicea, M.P.A. Fisher,

Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes ,

Phys. Rev.
B 74 (2006) 075422 [

SPIRES ].

ADS [75]

M. Kharitonov,

Phase diagram for the ν = 0

quantum Hall state in monolayer graphene ,

SPIRES .

[76]

R. Jackiw and C. Rebbi,

Solitons with fermion number 1/2,

Phys. Rev.
D 13 (1976) 3398 [

SPIRES ].

MathSciNet ADS [77]

A.J. Niemi and G.W. Semenoff,

Fermion number fractionization in quantum field theory ,

Phys. Rept.
135 (1986) 99 [

SPIRES ].

MathSciNet ADS CrossRef [78]

S.R. Coleman and B.R. Hill,

No more corrections to the topological mass term in QED in three-dimensions ,

Phys. Lett.
B 159 (1985) 184 [

SPIRES ].

ADS [79]

G.W. Semenoff, P. Sodano and Y.-S. Wu,

Renormalization of the statistics parameter in three-dimensional electrodynamics ,

Phys. Rev. Lett.
62 (1989) 715 [

SPIRES ].

ADS CrossRef © SISSA, Trieste, Italy 2011