Skip to main content
Log in

New directions in bipartite field theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a detailed investigation of Bipartite Field Theories (BFTs), a general class of 4d \( \mathcal{N} \) = 1 gauge theories which are defined by bipartite graphs. This class of theories is considerably expanded by identifying a new way of assigning gauge symmetries to graphs. A new procedure is introduced in order to determine the toric Calabi-Yau moduli spaces of BFTs. For graphs on a disk, we show that the matroid polytope for the corresponding cell in the Grassmannian coincides with the toric diagram of the BFT moduli space. A systematic BFT prescription for determining graph reductions is presented. We illustrate our ideas in infinite classes of BFTs and introduce various operations for generating new theories from existing ones. Particular emphasis is given to theories associated to non-planar graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].

  2. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Gaiotto, N=2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. I. Bah and B. Wecht, New N = 1 Superconformal Field Theories In Four Dimensions, arXiv:1111.3402 [INSPIRE].

  6. T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, arXiv:1108.4389 [INSPIRE].

  7. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. S. Franco, Bipartite Field Theories: from D-brane Probes to Scattering Amplitudes, arXiv:1207.0807 [INSPIRE].

  11. D. Xie and M. Yamazaki, Network and Seiberg Duality, JHEP 09 (2012) 036 [arXiv:1207.0811] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Franco, Dimer Models, Integrable Systems and Quantum Teichmüller Space, JHEP 09 (2011) 057 [arXiv:1105.1777] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Eager, S. Franco and K. Schaeffer, Dimer Models and Integrable Systems, JHEP 06 (2012) 106 [arXiv:1107.1244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Amariti, D. Forcella and A. Mariotti, Integrability on the Master Space, JHEP 06 (2012) 053 [arXiv:1203.1616] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Franco, D. Galloni and Y.-H. He, Towards the Continuous Limit of Cluster Integrable Systems, JHEP 09 (2012) 020 [arXiv:1203.6067] [INSPIRE].

    Article  ADS  Google Scholar 

  16. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Scattering Amplitudes and the Positive Grassmannian, arXiv:1212.5605 [INSPIRE].

  17. S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, Surveys in differential geometry 18 (2013) [arXiv:1103.5832] [INSPIRE].

  18. M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi and C. Vafa, BPS Quivers and Spectra of Complete N = 2 Quantum Field Theories, arXiv:1109.4941 [INSPIRE].

  19. M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi and C. Vafa, N=2 Quantum Field Theories and Their BPS Quivers, arXiv:1112.3984 [INSPIRE].

  20. D. Xie, Network, Cluster coordinates and N = 2 theory I, arXiv:1203.4573 [INSPIRE].

  21. D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Xie, Network, cluster coordinates and N = 2 theory II: irregular singularity, arXiv:1207.6112 [INSPIRE].

  23. D. Gaiotto, G.W. Moore and A. Neitzke, Spectral Networks and Snakes, arXiv:1209.0866 [INSPIRE].

  24. A. Postnikov, Total positivity, Grassmannians and networks, math/0609764.

  25. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J.J. Heckman, C. Vafa, D. Xie and M. Yamazaki, String Theory Origin of Bipartite SCFTs, arXiv:1211.4587 [INSPIRE].

  27. S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. K.D. Kennaway, Brane Tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. A. Ishii and K. Ueda, On moduli spaces of quiver representations associated with dimer models, arXiv:0710.1898.

  30. S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An Infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Butti, D. Forcella and A. Zaffaroni, The Dual superconformal theory for L pqr manifolds, JHEP 09 (2005) 018 [hep-th/0505220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The Master Space of N = 1 Gauge Theories, JHEP 08 (2008) 012 [arXiv:0801.1585] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, Mastering the Master Space, Lett. Math. Phys. 85 (2008) 163 [arXiv:0801.3477] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. A. Hanany and A. Zaffaroni, The master space of supersymmetric gauge theories, Adv. High Energy Phys. 2010 (2010) 427891.

    MathSciNet  Google Scholar 

  35. B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. R. Kenyon, A. Okounkov and S. Sheffield, Dimers and amoebae, math-ph/0311005 [INSPIRE].

  38. S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: proof of the correspondence, JHEP 11 (2006) 054 [hep-th/0601063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Hanany, Counting BPS operators in the chiral ring: the plethystic story, AIP Conf. Proc. 939 (2007) 165 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the Plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. R. Kenyon and J.-M. Schlenker, Rhombic embeddings of planar graphs with faces of degree 4, math-ph/0305057.

  46. B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. S. Franco, A. Hanany and Y.-H. He, A Trio of dualities: walls, trees and cascades, Fortsch. Phys. 52 (2004) 540 [hep-th/0312222] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. B. Feng, S. Franco, A. Hanany and Y.-H. He, UnHiggsing the del Pezzo, JHEP 08 (2003) 058 [hep-th/0209228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. A. Postnikov, D. Speyer and L. Williams, Matching polytopes, toric geometry and the non-negative part of the Grassmannian, arXiv:0706.2501.

  52. B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  53. S. Franco, A. Hanany, D. Krefl, J. Park, A.M. Uranga and D. Vegh, Dimers and orientifolds, JHEP 09 (2007) 075 [arXiv:0707.0298] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Hanany and R.-K. Seong, Brane Tilings and Specular Duality, JHEP 08 (2012) 107 [arXiv:1206.2386] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Goncharov and R. Kenyon, Dimers and cluster integrable systems, arXiv:1107.5588 [INSPIRE].

  57. A. Hanany and R.-K. Seong, Brane Tilings and Reflexive Polygons, Fortsch. Phys. 60 (2012) 695 [arXiv:1201.2614] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. A. Hanany, D. Orlando and S. Reffert, Sublattice Counting and Orbifolds, JHEP 06 (2010) 051 [arXiv:1002.2981] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. J. Davey, A. Hanany and R.-K. Seong, An Introduction to Counting Orbifolds, Fortsch. Phys. 59 (2011) 677 [arXiv:1102.0015] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. A. Hanany and R.-K. Seong, Symmetries of Abelian Orbifolds, JHEP 01 (2011) 027 [arXiv:1009.3017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. J. Davey, A. Hanany and R.-K. Seong, Counting Orbifolds, JHEP 06 (2010) 010 [arXiv:1002.3609] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. A. Hanany, V. Jejjala, S. Ramgoolam and R.-K. Seong, Calabi-Yau Orbifolds and Torus Coverings, JHEP 09 (2011) 116 [arXiv:1105.3471] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].

  66. N. Broomhead, Dimer models and Calabi-Yau algebras, arXiv:0901.4662 [INSPIRE].

  67. C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Y. Terashima and M. Yamazaki, Emergent 3-manifolds from 4d Superconformal Indices, Phys. Rev. Lett. 109 (2012) 091602 [arXiv:1203.5792] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Franco.

Additional information

ArXiv ePrint: 1211.5139

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, S., Galloni, D. & Seong, RK. New directions in bipartite field theories. J. High Energ. Phys. 2013, 32 (2013). https://doi.org/10.1007/JHEP06(2013)032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)032

Keywords

Navigation