Skip to main content
Log in

Higgs precision (Higgcision) era begins

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

After the discovery of the Higgs boson at the LHC, it is natural to start the research program on the precision study of the Higgs-boson couplings to various standard model (SM) particles. We provide a generic framework for the deviations of the couplings from their SM values by introducing a number of parameters. We show that a large number of models beyond the SM can be covered, including two-Higgs-doublet models, supersymmetric models, little-Higgs models, extended Higgs sectors with singlets, and fourth generation models. We perform global fits to the most updated data from CMS, ATLAS, and Tevatron under various initial conditions of the parameter set. In particular, we have made explicit comparisons between the fitting results before and after the Moriond 2013 meetings. Highlights of the results include: (i) the nonstandard decay branching ratio of the Higgs boson is less than 22%; (ii) the most efficient way to achieve the best fit for the data before the Moriond update is to introduce additional particle contributions to the triangular-loop functions of Hγγ and Hgg vertices; (iii) the 1σ allowed range of the relative coupling of HVV is \( 1.01_{-0.14}^{+0.13 } \), which means that the electroweak-symmetry breaking contribution from the observed Higgs boson leaves only a small room for other Higgs bosons; (iv) the current data do not rule out pseudoscalar couplings nor pseudoscalar contributions to the Hγγ and Hgg vertices; and (v) the SM Higgs boson provides the best fit to all the current Higgs data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Guralnik, C. Hagen and T. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  6. ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  7. CMS collaboration, Combined results of searches for the Standard Model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  8. CDF and D0 collaborations, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    Article  ADS  Google Scholar 

  9. ATLAS collaboration, K. Einsweiler, ATLAS status report on SM Higgs search/measurements, talk presented at HCP2012, Kyoto Japan November 15 2012.

  10. CMS collaboration, C. Paus, Latest on the Higgs from CMS, talk presented at HCP2012, Kyoto Japan November 15 2012.

  11. A. Juste, Standard Model Higgs boson searches at the Tevatron, talk at HCP2012 , Kyoto Japan November 15 2012.

  12. Y. Enari, \( H\to b\overline{b} \) from Tevatron, talk at HCP2012 , Kyoto Japan November 14 2012.

  13. ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168, CERN, Geneva Switzerland (2012).

  14. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170, CERN, Geneva Switzerland (2012).

  15. ATLAS collaboration, Search for the Standard Model Higgs boson in Hτ + τ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160, CERN, Geneva Switzerland (2012).

  16. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HZZ * → 4ℓ channel with the ATLAS detector, ATLAS-CONF-2012-169, CERN, Geneva Switzerland (2012).

  17. CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045, CERN, Geneva Switzerland (2012).

  18. CMS collaboration, Updated results on the new boson discovered in the search for the Standard Model Higgs boson in the ZZ → 4 leptons channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-12-041, CERN, Geneva Switzerland (2012).

  19. CMS collaboration, Search for the Standard Model Higgs boson decaying to tau pairs, CMS-PAS-HIG-12-043, CERN, Geneva Switzerland (2012).

  20. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  21. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    Article  ADS  Google Scholar 

  22. C.-F. Chang, K. Cheung, Y.-C. Lin and T.-C. Yuan, Mimicking the Standard Model Higgs boson in UMSSM, JHEP 06 (2012) 128 [arXiv:1202.0054] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Cheung, C.-T. Lu and T.-C. Yuan, Diphoton rate of the Standard-Model-like Higgs boson in the extra U(1) extended MSSM, Phys. Rev. D 87 (2013) 075001 [arXiv:1212.1288] [INSPIRE].

    ADS  Google Scholar 

  24. E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC?, Phys. Lett. B 716 (2012) 322 [arXiv:1202.1796] [INSPIRE].

    ADS  Google Scholar 

  25. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  26. K. Cheung and T.-C. Yuan, Could the excess seen at 124126 GeV be due to the Randall-Sundrum radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Arhrib, R. Benbrik and N. Gaur, Hγγ in inert Higgs doublet model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  28. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Distinguishing various models of the 125 GeV boson in vector boson fusion, JHEP 12 (2012) 058 [arXiv:1206.5853] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Various models mimicking the SM Higgs boson, Int. J. Mod. Phys. A 27 (2012) 1230030 [arXiv:1211.6823] [INSPIRE].

    ADS  Google Scholar 

  30. The XLVIII th rencontres de Moriond: the electroweak interactions and unified theories; and QCD and high energy interactions, http://moriond.in2p3.fr/.

  31. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012, CERN, Geneva Switzerland (2013).

  32. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-034, CERN, Geneva Switzerland (2013).

  33. CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001, CERN, Geneva Switzerland (2013).

  34. CMS collaboration, Properties of the Higgs-like boson in the decay HZZ → 4ℓ in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002, CERN, Geneva Switzerland (2013).

  35. CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a Standard Model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003, CERN, Geneva Switzerland (2013).

  36. CMS collaboration, Search for the Standard Model Higgs boson decaying to τ pairs in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-004, CERN, Geneva Switzerland (2013).

  37. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].

  39. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting the Higgs, arXiv:1206.4201 [INSPIRE].

  42. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  43. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  44. J. Ellis and T. You, Global analysis of the Higgs candidate with mass ~ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].

    ADS  Google Scholar 

  49. T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Article  Google Scholar 

  50. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, arXiv:1208.3436 [INSPIRE].

  51. B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].

    Article  ADS  Google Scholar 

  52. G. Cacciapaglia, A. Deandrea, G.D. La Rochelle and J.-B. Flament, Higgs couplings beyond the Standard Model, JHEP 03 (2013) 029 [arXiv:1210.8120] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].

    Article  Google Scholar 

  54. G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].

    ADS  Google Scholar 

  55. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  56. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  57. E. Masso and V. Sanz, Limits on anomalous couplings of the Higgs to electroweak gauge bosons from LEP and LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].

    ADS  Google Scholar 

  58. H. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 125 GeV Higgs boson, arXiv:1207.1083 [INSPIRE].

  59. N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083 [arXiv:1207.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  60. D.S. Alves, P.J. Fox and N.J. Weiner, Higgs signals in a type I 2HDM or with a sister Higgs, arXiv:1207.5499 [INSPIRE].

  61. W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].

    ADS  Google Scholar 

  62. S. Chang et al., Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, arXiv:1210.3439 [INSPIRE].

  63. Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, The 2HDM-X and Large Hadron Collider data, arXiv:1210.4922 [INSPIRE].

  64. A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].

    Article  Google Scholar 

  65. A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, arXiv:1302.4022 [INSPIRE].

  66. J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].

    ADS  Google Scholar 

  68. P. Bechtle et al., MSSM interpretations of the LHC discovery: light or heavy Higgs?, Eur. Phys. J. C 73 (2013) 2354 [arXiv:1211.1955] [INSPIRE].

    ADS  Google Scholar 

  69. J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].

    Article  ADS  Google Scholar 

  70. H. Baer et al., Post-LHC7 fine-tuning in the mSUGRA/CMSSM model with a 125 GeV Higgs boson, arXiv:1210.3019 [INSPIRE].

  71. T. Modak, D. Sahoo, R. Sinha and H.-Y. Cheng, Inferring the nature of the boson at 125126 GeV, arXiv:1301.5404 [INSPIRE].

  72. J. Lee et al., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric Standard Model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Lee, M. Carena, J. Ellis, A. Pilaftsis and C. Wagner, CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 180 (2009) 312 [arXiv:0712.2360] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Lee, M. Carena, J. Ellis, A. Pilaftsis and C. Wagner, CPsuperH2.3: an updated tool for phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 184 (2013) 1220 [arXiv:1208.2212] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Djouadi, V. Driesen, W. Hollik and A. Kraft, The Higgs photonZ boson coupling revisited, Eur. Phys. J. C 1 (1998) 163 [hep-ph/9701342] [INSPIRE].

    ADS  Google Scholar 

  76. M. Gonderinger, Y. Li, H. Patel and M.J. Ramsey-Musolf, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP 01 (2010) 053 [arXiv:0910.3167] [INSPIRE].

    Article  ADS  Google Scholar 

  77. Y. Cai, X.-G. He and B. Ren, Low mass dark matter and invisible Higgs width in darkon models, Phys. Rev. D 83 (2011) 083524 [arXiv:1102.1522] [INSPIRE].

    ADS  Google Scholar 

  78. A. Drozd, B. Grzadkowski and J. Wudka, Multi-scalar-singlet extension of the Standard Modelthe case for dark matter and an invisible Higgs boson, JHEP 04 (2012) 006 [arXiv:1112.2582] [INSPIRE].

    Article  ADS  Google Scholar 

  79. K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan and A. Zee, Global study of the simplest scalar phantom dark matter model, JCAP 10 (2012) 042 [arXiv:1207.4930] [INSPIRE].

    Article  ADS  Google Scholar 

  80. K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, The Higgs boson sector of the next-to-MSSM with CP-violation, Phys. Rev. D 82 (2010) 075007 [arXiv:1006.1458] [INSPIRE].

    ADS  Google Scholar 

  81. N. Arkani-Hamed, A. Cohen, E. Katz and A. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].

    ADS  Google Scholar 

  83. J. Reuter and M. Tonini, Can the 125 GeV Higgs be the little Higgs?, JHEP 02 (2013) 077 [arXiv:1212.5930] [INSPIRE].

    Article  ADS  Google Scholar 

  84. X.-F. Han, L. Wang, J.M. Yang and J. Zhu, Little Higgs theory confronted with the LHC Higgs data, arXiv:1301.0090 [INSPIRE].

  85. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  86. LHC Higgs cross section working group webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

  87. CDF collaboration, T. Aaltonen et al., Combination of searches for the Higgs boson using the full CDF data set, arXiv:1301.6668 [INSPIRE].

  88. A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct detection of Higgs-portal dark matter at the LHC, arXiv:1205.3169 [INSPIRE].

  89. K. Cheung, C.-W. Chiang and T.-C. Yuan, Partially strong WW scattering, Phys. Rev. D 78 (2008) 051701 [arXiv:0803.2661] [INSPIRE].

    ADS  Google Scholar 

  90. J. Chang, K. Cheung, C.-T. Lu and T.-C. Yuan, WW scattering in the era of post Higgs discovery, arXiv:1303.6335 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kingman Cheung.

Additional information

ArXiv ePrint: 1302.3794

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, K., Lee, J.S. & Tseng, PY. Higgs precision (Higgcision) era begins. J. High Energ. Phys. 2013, 134 (2013). https://doi.org/10.1007/JHEP05(2013)134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)134

Keywords

Navigation