[1]

OPERA collaboration, T. Adam et al.,

*Measurement of the neutrino velocity with the OPERA detector in the CNGS beam*,

arXiv:1109.4897 [

INSPIRE].

[2]

G. Brumfiel,

*Particles break light-speed limit*,

*Nature* 22 September 2011 [

http://www.nature.com/news/2011/110922/full/news.2011.554.html].

[3]

A. Cho,

*Neutrinos travel faster than light, according to one experiment*,

*Science* 22 September 2011 [

http://news.sciencemag.org/sciencenow/2011/09/neutrinos-travel-faster-than-lig.html].

[4]

L. Grossmann,

*Dimension-hop may allow neutrinos to cheat light speed*,

*New Scientist* 23 September 2011 [

http://www.newscientist.com/article/dn20957-dimensionhop-may-allow-neutrinos-to-cheat-light-speed.html].

[5]

L. Grossmann,

*Faster-than-light neutrino claim bolstered*,

*New Scientist* 23 September 2011 [

http://www.newscientist.com/article/dn20961-fasterthanlight-neutrino-claim-bolstered.html]

[6]

E. Reich,

*Speedy neutrinos challenge physicists*,

*Nature*
**477** (2011) 520 [

http://www.nature.com/news/2011/110927/full/477520a.html].

ADSCrossRef[7]

E. Cartlidge,

*Breaking news: error undoes faster-than-light neutrino results*,

*ScienceInsider* 22 February, 2012 [

http://news.sciencemag.org/scienceinsider/2012/02/breaking-news-error-undoes-faster.html].

[8]

E. Cartlidge,

*Breaking news: official word on superluminal neutrinos leaves warp-drive fans a shred of hope-barely*,

*ScienceInsider* 24 February 2012 [

http://news.sciencemag.org/scienceinsider/2012/02/official-word-on-superluminal-ne.html].

[9]

ICARUS collaboration, M. Antonello et al.,

*Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam*,

arXiv:1203.3433 [

INSPIRE].

[10]

E. Recami, *I tachioni*, *Annuario della EST.*
**73** (1973) 85.

[11]

E. Giannetto, G. Maccarrone, R. Mignani and E. Recami,

*Are muon neutrinos faster than light particles?: possible consequences for neutrino oscillations*,

*Phys. Lett.*
**B 178** (1986) 115 [

INSPIRE].

ADS[12]

J. Alfaro,

*Quantum gravity and Lorentz invariance deformation in the standard model*,

*Phys. Rev. Lett.*
**94** (2005) 221302 [

hep-th/0412295] [

INSPIRE].

MathSciNetADSCrossRef[13]

V. Gharibyan,

*Possible observation of photon speed energy dependence*,

*Phys. Lett.*
**B 611** (2005) 231 [

hep-ex/0303010] [

INSPIRE].

ADS[14]

H. Päs, S. Pakvasa and T.J. Weiler,

*Sterile-active neutrino oscillations and shortcuts in the extra dimension*,

*Phys. Rev.*
**D 72** (2005) 095017 [

hep-ph/0504096] [

INSPIRE].

ADS[15]

J. Dent, H. Päs, S. Pakvasa and T. Weiler, *Neutrino time travel*, in the proceedings of the *15th international Conference on Supersymmetry and the Unification of fundamental Interactions SUSY 2007*, July 26-August 1, 2007, Karlsruhe Germany, W. de Boer and I. Gebauer eds., Brno: University of Karlsruhe in collaboration with Tribun EU s.r.o. (2008) 760.

[16]

S. Hollenberg, O. Micu, H. Päs and T.J. Weiler,

*Baseline-dependent neutrino oscillations withextra-dimensional shortcuts*,

*Phys. Rev.*
**D 80** (2009) 093005 [

arXiv:0906.0150] [

INSPIRE].

ADS[17]

G. Dvali and A. Vikman,

*Price for environmental neutrino-superluminality*,

*JHEP*
**02** (2012) 134 [

arXiv:1109.5685] [

INSPIRE].

ADSCrossRef[18]

G. Dvali, private communication (2011).

[19]

M. Anacleto, F. Brito and E. Passos,

*Supersonic velocities in noncommutative acoustic black holes*,

*Phys. Rev.*
**D 85** (2012) 025013 [

arXiv:1109.6298] [

INSPIRE].

ADS[20]

X.-J. Bi, P.-F. Yin, Z.-H. Yu and Q. Yuan,

*Constraints and tests of the OPERA superluminal neutrinos*,

*Phys. Rev. Lett.*
**107** (2011) 241802 [

arXiv:1109.6667] [

INSPIRE].

ADSCrossRef[21]

E. Ciuffoli, J. Evslin, J. Liu and X. Zhang,

*OPERA and a neutrino dark energy model*,

arXiv:1109.6641 [

INSPIRE].

[22]

N. Itoh, H. Hayashi, A. Nishikawa and Y. Kohyama,

*Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, bremsstrahlung, and recombination neutrino processes*,

*Astrophys. J. Supp.*
**102** (1996) 411.

ADSCrossRef[23]

A. Kehagias,

*Relativistic superluminal neutrinos*,

arXiv:1109.6312 [

INSPIRE].

[24]

R. Konoplya,

*Superluminal neutrinos and the tachyon*’

*s stability in the rotating Universe*,

*Phys. Lett.*
**B 706** (2012) 451 [

arXiv:1109.6215] [

INSPIRE].

ADS[25]

G. Kraniotis,

*Exact deflection of a neutral-tachyon in the Kerr*’

*s gravitational field*,

arXiv:1110.1223 [

INSPIRE].

[26]

D. Lüst and M. Petropoulos,

*Comment on superluminality in general relativity*,

*Class. Quant. Grav.*
**29** (2012) 085013 [

arXiv:1110.0813] [

INSPIRE].

ADSCrossRef[27]

C. Pfeifer and M.N. Wohlfarth,

*Beyond the speed of light on Finsler spacetimes*,

arXiv:1109.6005 [

INSPIRE].

[28]

E.N. Saridakis,

*Superluminal neutrinos in Ho*ř

*ava-Lifshitz gravity*,

arXiv:1110.0697 [

INSPIRE].

[29]

S.I. Vacaru,

*Super-luminal effects for Finsler branes as a way to preserve the paradigm of relativity theories*,

arXiv:1110.0675 [

INSPIRE].

[30]

P. Wang, H. Wu and H. Yang,

*Superluminal neutrinos and domain walls*,

arXiv:1109.6930 [

INSPIRE].

[31]

M. Schreck,

*Multiple Lorentz groups* —

*A toy model for superluminal OPERA neutrinos*,

arXiv:1111.7268 [

INSPIRE].

[32]

G. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti,

*The power of brane induced gravity*,

*Phys. Rev.*
**D 64** (2001) 084004 [

hep-ph/0102216] [

INSPIRE].

ADS[33]

B. Bertotti, P. Farinella and D. Vokrouhlický,

*Physics of the Solar system*, Kluwer Academic Press, Dordrecht Germany (2003).

CrossRef[34]

C. Burgess and J. Cloutier,

*Astrophysical evidence for a weak new force?*,

*Phys. Rev.*
**D 38** (1988) 2944 [

INSPIRE].

ADS[35]

C. Talmadge, J. Berthias, R. Hellings and E. Standish,

*Model independent constraints on possible modifications of newtonian gravity*,

*Phys. Rev. Lett.*
**61** (1988) 1159 [

INSPIRE].

ADSCrossRef[36]

E. Fischbach and C. Talmadge,

*The search for non-newtonian gravity*, Springer-Verlag, New York U.S.A. (1999).

MATHCrossRef[37]

K. Nordtvedt,

*Improving gravity theory tests with solar system [grand fits]*,

*Phys. Rev.*
**D 61** (2000) 122001 [

INSPIRE].

ADS[38]

L. Iorio,

*Constraints to a Yukawa gravitational potential from laser data to LAGEOS satellites*,

*Phys. Lett.*
**A 298** (2002) 315 [

gr-qc/0201081] [

INSPIRE].

ADS[39]

E. Adelberger, B. Heckel and N. A.E., *Tests of the gravitational inverse-square law*, *Ann. Rev. Nucl. Part. Sc.*
**53** (2003) 77.

[40]

D. Lucchesi,

*Lageos II perigee shift and Schwarzschild gravitoelectric field*,

*Phys. Lett.*
**A 318** (2003) 234.

ADS[41]

N. Kolosnitsyn and V. Melnikov,

*Test of the inverse square law through precession of orbits*,

*Gen. Rel. Grav.*
**36** (2004) 1619 [

gr-qc/0302048] [

INSPIRE].

ADSMATHCrossRef[42]

N. Kolosnitsyn and V. Melnikov,

*New observational tests of non-newtonian interactions at planetary and binary pulsar orbital distances*,

*Grav. Cosm.*
**10** (2004) 137.

ADSMATH[43]

O. Bertolami and J. Paramos,

*Astrophysical constraints on scalar field models*,

*Phys. Rev.*
**D 71** (2005) 023521 [

astro-ph/0408216] [

INSPIRE].

MathSciNetADS[44]

S. Reynaud and M.-T. Jaekel,

*Testing the Newton law at long distances*,

*Int. J. Mod. Phys.*
**A 20** (2005) 2294 [

gr-qc/0501038] [

INSPIRE].

ADS[45]

M. Sereno and P. Jetzer,

*Dark matter versus modifications of the gravitational inverse-square law: results from planetary motion in the Solar system*,

*Mon. Not. Royal Astr. Soc.*
**371** (2006) 626.

ADSCrossRef[46]

G.S. Adkins and J. McDonnell,

*Orbital precession due to central-force perturbations*,

*Phys. Rev.*
**D 75** (2007) 082001 [

gr-qc/0702015] [

INSPIRE].

MathSciNetADS[47]

L. Iorio,

*First preliminary tests of the general relativistic gravitomagnetic field of the sun and new constraints on a Yukawa-like fifth force from planetary data*,

*Plan. Sp. Sc.*
**55** (2007) 1290.

ADSCrossRef[48]

L. Iorio,

*Constraints on the range lambda of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from Solar system planetary motions*,

*JHEP*
**10** (2007) 041 [

arXiv:0708.1080] [

INSPIRE].

ADSCrossRef[49]

L. Iorio,

*Putting Yukawa-like modified gravity (mog) on the test in the Solar system*,

*Schol. Res. Exch.*
**2008** (2008) 238385.

ADS[50]

J. Moffat,

*A modified gravity and its consequences for the Solar system, astrophysics and cosmology*,

*Int. J. Mod. Phys.*
**D 16** (2008) 2075 [

gr-qc/0608074] [

INSPIRE].

ADS[51]

X.-M. Deng, Y. Xie and T.-Y. Huang,

*A modified scalar-tensor-vector gravity theory and the constraint on its parameters*,

*Phys. Rev.*
**D 79** (2009) 044014 [

arXiv:0901.3730] [

INSPIRE].

ADS[52]

I. Haranas and O. Ragos,

*Yukawa-type effects in satellite dynamics*,

*Astrophys. Sp. Sc.*
**331** (2011) 115.

ADSMATHCrossRef[53]

I. Haranas and O. Ragos,

*Calculation of radar signal delays in the vicinity of the sun due to the contribution of a Yukawa correction term in the gravitational potential*,

*Astrophys. Sp. Sc.*
**334** (2011) 71.

ADSMATHCrossRef[54]

I. Haranas, O. Ragos and M. Vasile,

*Yukawa-type potential effects in the anomalistic period of celestial bodies*,

*Astrophys. Sp. Sc.*
**332** (2011) 107.

ADSMATHCrossRef[55]

D. Krause and E. Fischbach, *Searching for extra dimensions and new string-inspired forces in the Casimir regime*, in *Gyros, clocks, interferometers…: testing relativistic gravity in space*, *Lecture Notes in Physics*
**562**, Springer-Verlag, Berlin Germany (2001) 292.

[56]

J. Moffat,

*Modified gravity or dark matter?*,

arXiv:1101.1935 [

INSPIRE].

[57]

K. Nordtvedt, *An overview of Solar system gravitational physics: the theory-experiment interface*, in *Gyros, clocks, interferometers…: testing relativistic gravity in space*, *Lecture Notes in Physics*
**562**, Springer-Verlag, Berlin Germany (2001) 4.

[58]

K. Nordtvedt, , *LARES and tests on new long range forces*, in *LARES Laser Relativity Satellite for the study of the Earth gravitational field and general relativity measurements. An ASI small mission. Phase A report*, Università di Roma “La Sapienza”, Rome Italy, (1998) 34.

[59]

J. Ries, R. Eanes and B. Tapley, *Lense-thirring precession determination from laser ranging to artificial satellites*, in *Nonlinear gravitodynamics. The lense-thirring effect*, World Scientific, Singapore (2003) 201.

[60]

I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes-Vieira and J. Pérez-Mercader,

*Test of general relativity and measurement of the lense-thirring effect with two earth satellites*,

*Science*
**279** (1998) 2100.

ADSCrossRef[61]

D. Lucchesi, *The LAGEOS satellites: non-gravitational perturbations and the lense-thirring effect*, in *The measurement of gravitomagnetism: a challenging enterprise*, NOVA Science Publishers, Hauppauge U.S.A. (2007) 137.

[62]

M. Pearlman, J. Degnan, and J. Bosworth,

*The international laser ranging service*,

*Adv. Sp. Res.*
**30** (2002) 135.

ADSCrossRef[63]

F. Barthelmes and W. Köhler, *A web based service for using global earth gravity field models*, in *Arbeitskreis Geodäsie/Geophysik, Herbsttagung 2010*, 19-22 October 2010, Smolenice, Slovakia, Deutsches GeoForschungsZentrum GFZ, (2010).

[64]

C. A. Wagner and D. C. McAdoo,

*Error calibration of geopotential harmonics in recent and past gravitational fields*,

*J. Geod.*
**86** (2012) 99.

ADSCrossRef[65]

A. Jäggi, L. Prange, U. Meyer, L. Mervart, G. Beutler, T. Gruber, R. Dach and R. Pail,

*Gravity field determination at AIUB: from annual to multi-annual solutions*,

**EGU2010-5842**, in

*EGU General Assembly 2010*, 2-7 May 2010, Vienna Austria, European Geophysical Union (2010) [

http://aiuws.unibe.ch/download/various/AIUB-CHAMP03S_120.gfc].

[66]

H. Goiginger et al., *The satellite-only global gravity field model GOCO02S*, **EGU2011-10571**, in *EGU General Assembly 2011*, 3-8 April 2011, Vienna Austria, European Geophysical Union (2011).

[67]

R. Pail et al.,

*First goce gravity field models derived by three different approaches*,

*J. Geod.*
**85** (2011) 819.

ADSCrossRef[68]

C. Förste et al., *Eigen-6 a new combined global gravity field model including goce data from the collaboration of gfz-potsdam and grgs-toulouse*, **EGU2011-3242**, in *EGU General Assembly 2011*, 3-8 April 2011, Vienna Austria, European Geophysical Union (2011).

[69]

B. Tapley, et al.,

*The joint gravity model 3*,

*J. Geophys. Res.*
**101** (1996) 28029.

ADSCrossRef[70]

F. Lemoine et al., *The development of the joint nasa gsfc and the national imagery and mapping agency (nima) geopotential modelegm96*, *NASA Technical Paper*
**NASA/TP1998206861**, Goddard Space Flight Center, Greenbelt U.S.A. (1998).

[71]

T. Mayer-Gürr, E. Kurtenbach, and A. Eicker,

*Itg-grace2010*,

http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010 (2010).

[72]

D.M. Lucchesi and R. Peron,

*Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity*,

*Phys. Rev. Lett.*
**105** (2010) 231103 [

arXiv:1106.2905] [

INSPIRE].

ADSCrossRef[73]

C. Reigber et al.,

*An earth gravity field model complete to degree and order 150 from grace: Eigen-grace02s*,

*J. Geodyn.*
**39** (2005) 1.

ADSCrossRef[74]

R. March, G. Bellettini, R. Tauraso and S. Dell’Agnello,

*Constraining spacetime torsion with LAGEOS*,

*Gen. Rel. Grav.*
**43** (2011) 3099 [

arXiv:1101.2791] [

INSPIRE].

ADSMATHCrossRef[75]

J. Dickey et al.,

*Lunar laser ranging: a continuing legacy of the apollo program*,

*Science*
**265** (1994) 482.

ADSCrossRef[76]

J. Müller, M. Schneider, M. Soffel and H. Ruder,

*Testing Einstein*’

*s theory of gravity by analyzing lunar laser ranging data*,

*Astrophys. J. Lett.*
**382** (1991) L101.

ADSCrossRef[77]

J. Williams, X. Newhall and J. Dickey,

*Relativity parameters determined from lunar laser ranging*,

*Phys. Rev.*
**D 53** (1996) 6730 [

INSPIRE].

ADS[78]

J. Müller, J. Williams, S. Turyshev and P. Shelus, *Potential capabilities of lunar laser ranging for geodesy and relativity*, in *Dynamic planet 2005: monitoring and understanding a dynamic planet with geodetic and oceanographic tools*, IAG Symposia, Springer-Verlag, Berlin Germany (2007) 903.

[79]

J. Müller, J. Williams and S. Turyshev, *Lunar laser ranging contributions to relativity and geodesy*, in *Lasers, clocks and drag-free control: exploration of relativistic gravity in space*, *Astrophys. Sp. Sc. Lib.*
**349**, Springer-Verlag, Berlin Germany, (2008) 456.

[80]

G. Li and H. Zhao,

*Constraint on intermediate-range gravity from earth-satellite and lunar orbiter measurements and lunar laser ranging*,

*Int. J. Mod. Phys.*
**D 14** (2005) 1657 [

gr-qc/0505090] [

INSPIRE].

ADS[81]

L. Tsang,

*How can NASA*’

*s lunar reconnaissance orbiter projects verify the existence of the fifth force*,

*New Astronomy*
**17** (2012) 18.

MathSciNetADSCrossRef