Skip to main content
Log in

Electromagnetic quasinormal modes of rotating black strings and the AdS/CFT correspondence

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the quasinormal spectrum of electromagnetic perturbations of rotating black strings. Among the solutions of Einstein equations in the presence of a negative cosmological constant there are asymptotically anti-de Sitter (AdS) black holes whose horizons have the topology of a cylinder. The stationary version of these AdS black holes represents rotating black strings. The conformal field theory (CFT) dual of a black string lives in a Minkowski space with a compact dimension. On the basis of the AdS/CFT duality, we interpret a CFT plasma moving with respect to the preferred rest frame introduced by the topology as the holographic dual to a rotating black string. We explore the consequences of this correspondence by investigating the electromagnetic perturbations of a black string for different rotation parameter values. As usual the electromagnetic quasinormal modes (QNM) correspond to the poles of retarded Green’s functions of R-symmetry currents in the boundary field theory. The hydrodynamic regime of the QNM dispersion relations are analytically studied. Finally, we investigate numerically the effect of rotation on all the family of black-string electromagnetic quasinormal modes. We interpret these results from the CFT perspective and notice the emergence of effects like Doppler shift of the frequencies and dilation of the thermalization times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Boschi-Filho and N.R. Braga, Gauge/string duality and hadronic physics, Braz. J. Phys. 37 (2007) 567 [hep-th/0604091] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S.S. Gubser, Heavy ion collisions and black hole dynamics, Int. J. Mod. Phys. D 17 (2008) 673 [Gen. Rel. Grav. 39 (2007) 1533] [INSPIRE].

  8. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity dualsa review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].

    ADS  Google Scholar 

  9. E. Iancu, Partons and jets in a strongly-coupled plasma from AdS/CFT, Acta Phys. Polon. B 39 (2008) 3213 [arXiv:0812.0500] [INSPIRE].

    ADS  Google Scholar 

  10. R. Myers and S. Vazquez, Quark soup al dente: applied superstring theory, Class. Quant. Grav. 25 (2008) 114008 [arXiv:0804.2423] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].

    Google Scholar 

  12. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  13. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  15. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

    ADS  Google Scholar 

  16. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale Univ. Press, New Haven U.S.A. (1986) [INSPIRE].

    Google Scholar 

  19. M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Fujita, Non-equilibrium thermodynamics near the horizon and holography, JHEP 10 (2008) 031 [arXiv:0712.2289] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

  23. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].

    Article  ADS  Google Scholar 

  25. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes to Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M.M. Caldarelli, O.J. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.P. Lemos, Two-dimensional black holes and planar general relativity, Class. Quant. Grav. 12 (1995) 1081 [gr-qc/9407024] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. C.-G. Huang and C.-B. Liang, A torus like black hole, Phys. Lett. A 201 (1995) 27 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. D.R. Brill, J. Louko and P. Peldan, Thermodynamics of (3 + 1)-dimensional black holes with toroidal or higher genus horizons, Phys. Rev. D 56 (1997) 3600 [gr-qc/9705012] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. J. Stachel, Globally stationary but locally static space-times: a gravitational analog of the Aharonov-Bohm effect, Phys. Rev. D 26 (1982) 1281 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. J. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B 353 (1995) 46 [gr-qc/9404041] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. R. Konoplya and A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. J.P. Lemos, Rotating toroidal black holes in anti-de Sitter space-times and their properties, gr-qc/0011092 [INSPIRE].

  39. J.P. Lemos and V.T. Zanchin, Rotating charged black string and three-dimensional black holes, Phys. Rev. D 54 (1996) 3840 [hep-th/9511188] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP 11 (2008) 030 [arXiv:0809.0297] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

    ADS  Google Scholar 

  43. A.S. Miranda and V.T. Zanchin, Quasinormal modes of plane-symmetric anti-de Sitter black holes: a complete analysis of the gravitational perturbations, Phys. Rev. D 73 (2006) 064034 [gr-qc/0510066] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. C.P. Herzog, The hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126] [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. C.P. Herzog, The sound of M-theory, Phys. Rev. D 68 (2003) 024013 [hep-th/0302086] [INSPIRE].

    ADS  Google Scholar 

  48. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev. D 77 (2008) 066014 [Erratum ibid. D 78 (2008) 089902] [arXiv:0712.2916] [INSPIRE].

  50. J. Morgan, V. Cardoso, A.S. Miranda, C. Molina and V.T. Zanchin, Gravitational quasinormal modes of AdS black branes in d spacetime dimensions, JHEP 09 (2009) 117 [arXiv:0907.5011] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. R.C. Myers and M.C. Wapler, Transport properties of holographic defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaqueline Morgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, J., Miranda, A.S. & Zanchin, V.T. Electromagnetic quasinormal modes of rotating black strings and the AdS/CFT correspondence. J. High Energ. Phys. 2013, 169 (2013). https://doi.org/10.1007/JHEP03(2013)169

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)169

Keywords

Navigation