Shear sum rules at finite chemical potential
 Justin R. David,
 Sachin Jain,
 Somyadip Thakur
 … show all 3 hide
Purchase on Springer.com
$39.95 / €34.95 / £29.95*
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Abstract
We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T _{ xy } component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the $ \mathcal{N} = {4} $ YangMills, theory of the M2branes and M5branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have nontrivial vacuum expectation values at finite chemical potential.
 R. Baier, Rcharge thermodynamical spectral sum rule in N = 4 YangMills theory, arXiv:0910.3862 [INSPIRE].
 D. Kharzeev and K. Tuchin, Bulk viscosity of QCD matter near the critical temperature, JHEP 09 (2008) 093 [arXiv:0705.4280] [INSPIRE]. CrossRef
 F. Karsch, D. Kharzeev and K. Tuchin, Universal properties of bulk viscosity near the QCD phase transition, Phys. Lett. B 663 (2008) 217 [arXiv:0711.0914] [INSPIRE].
 H.B. Meyer, The bulk channel in thermal gauge theories, JHEP 04 (2010) 099 [arXiv:1002.3343] [INSPIRE]. CrossRef
 H.B. Meyer, Lattice gauge theory sum rule for the shear channel, Phys. Rev. D 82 (2010) 054504 [arXiv:1005.2686] [INSPIRE].
 R.A. Ferrell and R.E. Glover, Conductivity of superconducting films: a sum rule, Phys. Rev. 109 (1958) 1398 [INSPIRE]. CrossRef
 M. Tinkham and R.A. Ferrell, Determination of the superconducting skin depth from the energy gap and sum rule, Phys. Rev. Lett. 2 (1959) 331. CrossRef
 P. Romatschke and D.T. Son, Spectral sum rules for the quarkgluon plasma, Phys. Rev. D 80 (2009) 065021 [arXiv:0903.3946] [INSPIRE].
 T. Springer, C. Gale, S. Jeon and S.H. Lee, A shear spectral sum rule in a nonconformal gravity dual, Phys. Rev. D 82 (2010) 106005 [arXiv:1006.4667] [INSPIRE].
 T. Springer, C. Gale and S. Jeon, Bulk spectral functions in single and multiscalar gravity duals, Phys. Rev. D 82 (2010) 126011 [arXiv:1010.2760] [INSPIRE].
 D.R. Gulotta, C.P. Herzog and M. Kaminski, Sum rules from an extra dimension, JHEP 01 (2011) 148 [arXiv:1010.4806] [INSPIRE]. CrossRef
 G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hepth/0205052] [INSPIRE]. CrossRef
 P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hepth/0506184] [INSPIRE].
 D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hepth/0205051] [INSPIRE]. CrossRef
 V.I. Arnol’d, Ordinary differential equations, SpringerVerlag, New York U.S.A. (1992).
 H. Osborn and A. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hepth/9307010] [INSPIRE]. CrossRef
 K. Behrndt, M. Cvetič and W. Sabra, Nonextreme black holes of fivedimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hepth/9810227] [INSPIRE]. CrossRef
 D.T. Son and A.O. Starinets, Hydrodynamics of Rcharged black holes, JHEP 03 (2006) 052 [hepth/0601157] [INSPIRE]. CrossRef
 A. Batrachenko, J.T. Liu, R. McNees, W. Sabra and W. Wen, Black hole mass and HamiltonJacobi counterterms, JHEP 05 (2005) 034 [hepth/0408205] [INSPIRE]. CrossRef
 D. Marolf and S.F. Ross, Boundary conditions and new dualities: vector fields in AdS/CFT, JHEP 11 (2006) 085 [hepth/0606113] [INSPIRE]. CrossRef
 E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hepth/0112258 [INSPIRE].
 M. Berkooz, A. Sever and A. Shomer, ’Double trace’ deformations, boundary conditions and spacetime singularities, JHEP 05 (2002) 034 [hepth/0112264] [INSPIRE]. CrossRef
 M. Duff, TASI lectures on branes, black holes and Antide Sitter space, hepth/9912164 [INSPIRE].
 N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 Supersymmetric RG Flows on M2 Branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE]. CrossRef
 A. Donos and J.P. Gauntlett, Superfluid black branes in AdS _{4} × S ^{7}, JHEP 06 (2011) 053 [arXiv:1104.4478] [INSPIRE]. CrossRef
 D.T. Son and P. Surowka, Hydrodynamics with triangle anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE]. CrossRef
 Title
 Shear sum rules at finite chemical potential
 Journal

Journal of High Energy Physics
2012:74
 Online Date
 March 2012
 DOI
 10.1007/JHEP03(2012)074
 Online ISSN
 10298479
 Publisher
 SpringerVerlag
 Additional Links
 Topics
 Keywords

 Gaugegravity correspondence
 Black Holes in String Theory
 AdSCFT Correspondence
 Industry Sectors
 Authors

 Justin R. David ^{(1)}
 Sachin Jain ^{(2)} ^{(3)}
 Somyadip Thakur ^{(1)}
 Author Affiliations

 1. Centre for High Energy Physics, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
 2. Tata Institute for Fundamental Research, Homi Bhabha Road, Mumbai, 400005, India
 3. Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751005, India