Journal of High Energy Physics

, 2012:113

Symmetries and currents of the ideal and unitary Fermi gases

Open Access

DOI: 10.1007/JHEP02(2012)113

Cite this article as:
Bekaert, X., Meunier, E. & Moroz, S. J. High Energ. Phys. (2012) 2012: 113. doi:10.1007/JHEP02(2012)113


The maximal algebra of symmetries of the free single-particle Schrödinger equation is determined and its relevance for the holographic duality in non-relativistic Fermi systems is investigated. This algebra of symmetries is an infinite dimensional extension of the Schrödinger algebra, it is isomorphic to the Weyl algebra of quantum observables, and it may be interpreted as a non-relativistic higher-spin algebra. The associated infinite collection of Noether currents bilinear in the fermions are derived from their relativistic counterparts via a light-like dimensional reduction. The minimal coupling of these currents to background sources is rewritten in a compact way by making use of Weyl quantisation. Pushing forward the similarities with the holographic correspondence between the minimal higher-spin gravity and the critical O(N ) model, a putative bulk dual of the unitary and the ideal Fermi gases is briefly discussed.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence Space-Time Symmetries 
Download to read the full article text

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis PoissonUniversité François RabelaisToursFrance
  2. 2.Institut für Theoretische PhysikHeidelbergGermany
  3. 3.Department of PhysicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations