Blokland, P., Giessen, C, & Tall, D. O. (2000). Graphic Calculus for Windows [Computer software). Available on the World Wide Web:http://www.vusoft.nl

Chae, S. D., & Tall, D. O. (in press). Aspects of the construction of conceptual knowledge in the case of computer aided exploration of period doubling. In C. Morgan & T. Rowlands (Eds.),*Research in Mathematics Education: Vol*. 3. Bristol, England: British Society for Research in the Learning of Mathematics, Faculty of Education.

Collis, K. F. (1972).*A study of the relationship between formal thinking and combinations of operations*. Newcastle, NSW: University of Newcastle.

Carmi, B. (1991). Limits. In D. O. Tall (Ed.),*Advanced Mathematical Thinking* (pp.153–166). Dordrecht, The Netherlands: Kluwer.

Crick, F. (1994).*The astonishing hypothesis: The scientific search for the soul*. London, England: Simon & Schuster.

Crowley, L. R. F. (2000).*Cognitive structures in college algebra*. Unpublished Ph.D. thesis, University of Warwick, England.

Douady, R. (1986), Jeu de cadres et dialectique outil-objet.*Recherches en Didactique des Mathematiques, 7*(2), 5–32.

Davis, R. B., Jockusch, E., & McKnight, C. (1978). Cognitive processes in learning algebra.*Journal of Children’s Mathematical Behavior, 2*(1), 10–320.

Dehaene, S. (1997).*The number sense: How the mind creates mathematics*. New York, NY: Oxford University Press.

DeMarois, P. (1998).*Aspects and layers of the function concept*. Unpublished doctoral thesis, University of Warwick, England.

Gleick, J. (1987).*Chaos*. New York, NY: Penguin.

Gray, E. M., & Pitta, D. (1997). Changing Emily’s images.*Mathematics Teaching, 161*, 38–51.

Gray, E., M, Pitta, D., Pinto, M. M. F., & Tall, D. O. (1999). Knowledge construction and diverging thinking in elementary and advanced mathematics.

*Educational Studies in Mathematics, 38*, 111–133.

CrossRefGray, E. M. & Tall, D. O. (1991). Duality, ambiguity and flexibility in successful mathematical thinking. In F. Furinghetti (Ed.),*Proceedings of the 15th annual conference of the International Group for the Psychology of Mathematics Education* (Vol. 2, pp. 72–79). Assisi, Italy: Program Committee.

Gray, E. M. & Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic.*Journal for Research in Mathematics Education, 26*, 115–141.

Htillter, M., Monaghan, J. D., & Roper, T. (1993). The effect of computer algebra use on students’ algebraic thinking. In R. Sutherland (Ed.),*Working Papers for ESRC Algebra Seminar*. London, England: London University, Institute of Education.

Kieran C. (1981). Pre-algebraic notions among 12 and 13 year olds. In Equipe de Recherche Pedagogique Laboratoire I.M.A.G. (Ed.),*Proceedings of the 5th annual conference of the International Group for the Psychology of Mathematics Education* (pp. 158–164). Grenoble, France: Program Committee.

Lanford, O. E. (1982). A computer-assisted proof of the Feigenbaum conjectures.

*Bulletin of the American Mathematical Society*, 6, 427.

CrossRefLi, L., & Tall, D. O. (1993). Constructing different concept images of sequences and limits by programming. In I. Hirabayashi, N. Nohda, K. Shigematsu, & F.-L. Lin (Eds.),*Proceedings of the 17th annual conference of the International Group for the Psychology of Mathematics Education* (Vol. 2, pp. 41–48). Tsukuba, Japan: Program Committee.

Matz, M. (1980). Towards a computational theory of algebraic competence,*Journal of Mathematical Behavior, 3* (1), 93–66.

Monaghan, J. D. (1986).*Adolescents’ understanding of limits and infinity*. Unpublished doctoral thesis, University of Warwick, England.

Monaghan, J., Sun, S., & Tall, D. O. (1994), Construction of the limit concept with a computer algebra system. In J. P. da Ponte & J. F. Matos (Eds.),*Proceedings of the 18th annual conference of the International Group for the Psychology of Mathematics Education* (Vol. 3, pp. 279–286). Lisbon, Portugal: Program Committee.

Pinto, M. M. F., (1998).*Students’ understanding of real analysis*. Unpublished doctoral thesis, University of Warwick, England.

School Mathematics Project (1991).*Introductory calculus*. Cambridge, England: Cambridge University Press.

Skemp, R. R. (1971).*The psychology of learning mathematics*. London, England: Penguin.

Still, S. (1993).*Students’ understanding of limits and the effect of computer algebra systems*. Unpublished M.Ed. thesis, Leeds University, England.

Tall, D. O. (1982). The blancmange flmction, continuous everywhere but differentiable nowhere.

*Mathematical Gazette*, 66, 11–22.

CrossRefTall, D. O. (1985). Understanding the calculus.*Mathematics Teaching, 110*, 49–53.

Tall, D. O. (1993a). Interrelationships between mind and computer: Processes, images, symbols In D. L. Ferguson (Ed.),*Advanced technol,ogies in the teaching of mathematics and science* (pp. 385–413). New York, NY: Springer-Verlag.

Tall, D. A. (1993b). Real mathematics, rational computers and complex people. In Lum, L. (Ed.),*Proceedings of the 5th annual international conference on Technology in College.Mathematics Teaching* (pp. 243–258). Reading, MA: Addison-Wesley.

Tall, D. A. (1998). Information technology and mathematics education: Enthusiasms, possibilities & realities. In C. Alsina, J. M. Alvarez, M. Niss, A. Perez, L. Rico, & A. Sfard (Eds.),*Proceedings of the 8th International Congress on Mathematical Education*. (pp. 65–82). Seville: SAEM Thales.

Tall, D. A., Blokland, P., & Kok, D. (1990).*A graphic approach to the calculus*. Pleasantville, NY: Sunburst.

Tall, D. A. & Thomas, M. A. J. (1991). Encouraging versatile thinking in algebra using the computer.

*Educational Studies in Mathematics, 22*, 125–147.

CrossRefTall, D. A., Thomas, M. A. J., Davis, G., Gray, E. M., & Simpson, A. (2000). What is the object of the encapsulation of a process.*Journal ofMathematical Behavior, 18*(2), 1–19.

Thomas, M. A. J. (1988).*A conceptual approach to the early learning of algebra using a computer*. Unpublished doctoral thesis, University of Warwick, England.

Williams, S. R. (1991). Models of limit held by college calculus students.

*Journal for Research in Mathematics Education, 22*, 237–251.

CrossRef