Skip to main content
Log in

Origin and evolution of new genes

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

Organisms have variable genome sizes and contain different numbers of genes. This difference demonstrates that new gene origination is a fundamental process in evolutionary biology. Though the study of the origination of new genes dated back more than half a century ago, it is not until the 1990s when the first young genejingwei was found that empirical investigation of the molecular mechanisms of origination of new genes became possible. In the recent years, several young genes were identified and the studies on these genes have greatly enriched the knowledge of this field. Yet more details in a general picture of new genes origination are to be clarified. We have developed a systematic approach to searching for young genes at the genomic level, in the hope to summarize a general pattern of the origination and evolution of new genes, such as the rate of new gene appearance, impact of new genes on their host genomes, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fraser, C. M., Gocayne, J. D., White, O. et al., The minimal gene complement ofMycoplasma genitalium, Science, 1995, 270: 397–403.

    Article  Google Scholar 

  2. International human genome sequencing consortium, Initial sequencing and analysis of the human genome, Nature, 2001, 409: 860–921.

    Article  Google Scholar 

  3. Long, M., Langley, C. H., Natural selection and the origin ofjingwei, a chimeric processed functional gene inDrosophila, Science, 1993, 260: 91–95.

    Article  Google Scholar 

  4. Wang, W., Brunet, F. G., Nevo, E. et al., Originof sphinx, a young chimeric RNA gene inDrosophila melanogaster, Proc. Natl. Acad. Sci., 2002, 99: 448–4453.

    Google Scholar 

  5. Wang, W., Yu, H., Long, M., Duplication-degeneration as a mechanism of gene fission and the originof Drosophila new genes, Nat. Genet., 2004, 36(5): 523–527.

    Article  Google Scholar 

  6. Haldane, J. B. S., The Cause of Evolution, London: Longmans and Green, 1932.

    Google Scholar 

  7. Müller, H. J., The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere, Genetics, 1935, 17: 237–252.

    Google Scholar 

  8. Ohno, S., Evolution by gene duplication, New York-Berlin: Springer-Verlag, 1970.

    Google Scholar 

  9. Gilbert, W., Why genes in pieces? Nature, 1978, 271: 501.

    Article  Google Scholar 

  10. Gilbert, W., The exon theory of genes, Cold Spring Harbor Symposia on Quantitative Bilology, Volume LII: 1987, 901–905.

  11. Long, M., Evolution of novel gene, Curr. Opin. Genet. Dev., 2001, 11: 673–680.

    Article  Google Scholar 

  12. Betran, E., Long, M., Expansion of genome coding regions by acquision of new genes, Genetica, 2002, 115: 65–80.

    Article  Google Scholar 

  13. Long, M., Betran, E., Thornton, K. et al., The origin of new genes: Glimpses from the young and old, Nat. Rev. Genet., 2003, 4(11): 865–875.

    Article  Google Scholar 

  14. Lynch, M., Conery, J. S., The evolutionary fate and consequences of duplicate genes, Science, 2000, 290: 1151–1155.

    Article  Google Scholar 

  15. Blanc, G., Barakat, A., Guyot, R. et al., Extensive duplication and reshuffling in theArabidopsis genome, Plant Cell, 2000, 12: 1093–1101.

    Article  Google Scholar 

  16. Bubin, G. M., Comparative genomics of the eukaryotes, Science, 2000, 287: 2204–2215.

    Article  Google Scholar 

  17. Ball, C. A., Cherry, J. M., Genome comparisons highlight similarity and diversity within the eukaryotic kingdoms, Curr. Opin. Chem. Biol., 2001, 5: 86–89.

    Article  Google Scholar 

  18. Li, W. H., Gu, Z., Wang, H. et al., Evolutionary analyses of the human genome, Nature, 2001, 409: 847–849.

    Article  Google Scholar 

  19. Gu, X., Wang, Y. F., Gu, J. Y., Age distribution of human gene families shows significant roles of both largeand small-scale duplications in vertebrate evolution, Nat. Genet., 2002, 31: 205–209.

    Article  Google Scholar 

  20. Sudhof, T. C., Goldstein, J. L., Brown, M. S. et al., The LDL receptor gene: a mosaic of exons shared with different protein, Science, 1985, 228: 815–822.

    Article  Google Scholar 

  21. Anke, A. F., Rijk, V., Wilfried, W. et al., Exon shuffling mimicked in cell culture, Proc. Natl. Acad. Sci., 1999, 96: 8074–8079.

    Article  Google Scholar 

  22. Moran, J. V., Deberardinis, R. J., Kazazian, H. H., Exon shuffling by L1 retrotransposition, Science, 1999, 283: 1530–1534.

    Article  Google Scholar 

  23. Nurminsky, D. I., Nurminskaya, M. V., Aguiar, D. D. et al., Selective sweep of a newly evolved sperm-specific gene inDrosophilia, Natrue, 1998, 396: 572–575.

    Article  Google Scholar 

  24. Patthy, L., Genome evolution and evolution of exon-shuffling—a review, Gene, 1999, 238: 103–114.

    Article  Google Scholar 

  25. Long, M., Souza, D. S. J., Gilbert, W., Evolution of the intron-exon structure of eukaryotic genes, Curr. Opin. Genet. Dev., 1995, 5: 774 -778.

    Article  Google Scholar 

  26. Mccarrey, J. R., Nuleotide sequence of the promoter region of a tissue-specific human retroposon: comparision with its house keeping progenitor, Gene, 1987, 61: 291–298.

    Article  Google Scholar 

  27. Martignetti, J. A., Brosius, J., Neural BC1 RNA as an evolutionary marker: Guinea pig remains a rodent, Proc. Natl. Acad. Sci., 1993, 90: 9698–9702.

    Article  Google Scholar 

  28. Martignetti, J. A., Brosius, J., BC200 RNA: A neural RNA polymerase III product encoded by a monomeric Alu element, Proc. Natl. Acad. Sci., 1993, 90: 11563–11567.

    Article  Google Scholar 

  29. Betran, E., Wang, W., Jin, L. et al., Evolution of the Phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene, Mol. Biol. Evol., 2002, 19(5): 654–663.

    Google Scholar 

  30. Betran, E., Long, M.,Dntf-2r, a youngDrosophila retroposed gene with specific male expression under positive Darwinian selection, Genetics, 2003, 164: 977–988.

    Google Scholar 

  31. Brosius, J., Retroposons-seeds of evolution, Science 1993, 251: 753.

    Article  Google Scholar 

  32. Nekrutenko, A., Li, W. H., Transposable elements are found in a large number of human protein-coding genes, Trends Genet., 2001, 17(11): 619–621.

    Article  Google Scholar 

  33. Ochman, H., Lawrence, J. G., Groisman, E. A., Lateral gene transfer and the nature of bacterial innovation, Nature, 2000, 405: 299–304.

    Article  Google Scholar 

  34. Koning, D. A. P., Brinkman, F. S., Jones, S. J. et al., Lateral gene transfer and metabolic adaptation in the human parasiteTrichomonas vaginalis, Mol. Biol. Evol., 2000, 17: 1769–1773.

    Google Scholar 

  35. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge University Press, 1983.

    Book  Google Scholar 

  36. Fisher, R. A., The sheltering of lethals, Am. Nat., 1935, 69: 446–455.

    Article  Google Scholar 

  37. Nei, M., Accumulation of nonfunctional genes on sheltered chromosomes, Am. Nat., 1970, 104: 311–322.

    Article  Google Scholar 

  38. Bailey, G S., Poulter, R. T. M., Stockwell, P. A., Gene duplication in tetraploid fish: Model for gene silencing at unlinked duplicated loci, Proc. Natl. Acad. Sci., 1978, 75: 5575–5579.

    Article  Google Scholar 

  39. Kimura, M., King, J. L., Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift, Proc. Natl. Acad. Sci., 1979, 76: 2858–2861.

    Article  Google Scholar 

  40. Li, W. H., Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data form tetraploid fishes, Genetics, 1980, 95: 237–258.

    Google Scholar 

  41. Ohta, T., Simulating evolution by gene duplication, Genetics, 1987, 115: 207–213.

    Google Scholar 

  42. Walsh, J. B., How often do duplicated genes evolve new functions? Genetics, 1995, 139: 421–428.

    Google Scholar 

  43. Force, A., Lynch, M., Pickett, F. B. et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, 1999, 151: 1531–1545.

    Google Scholar 

  44. Lynch, M., Force, A., The probability of duplicate gene preservation by subfunctionalization, Genetics, 2000, 154: 459–473.

    Google Scholar 

  45. Walsh, B., Population-genetic models of the fates of duplicate genes, Genetica, 2003, 118: 279–294.

    Article  Google Scholar 

  46. Ohta, T., Evolution by gene duplication revisited: Differentiation of regulatory element versus protein, Genetica, 2003, 118: 209–216.

    Article  Google Scholar 

  47. Gu, X., Statistical methods for testing functional divergence after gene duplication, Mol. Biol. Evol., 1999, 16(12): 1664–1674.

    Google Scholar 

  48. Gu, X., Maximum-likelihood approach for gene family evolution under functional divergence, Mol. Biol. Evol., 2001, 18 (4): 453–464.

    Google Scholar 

  49. Wang, Y. F., Gu, X., Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction, Genetics, 2001, 158: 1311–1320.

    Google Scholar 

  50. Gu, X., Functional divergence in protein (family) sequence evolution, Genetica, 2003, 118: 133–141.

    Article  Google Scholar 

  51. Zhang, J., Zhang, Y. P., Rosenberg, H. F., Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating colobine monkey, Nat. Genet., 2002, 30: 411–415.

    Article  Google Scholar 

  52. Moore, R. C., Purugganan, M. D., The early stages of duplicate gene evolution, Proc. Natl. Acad. Sci., 2003, 100: 15682–15687.

    Article  Google Scholar 

  53. Malik, H. S., Henikoff, S., Adaptive evolution ofCid, a centromere-specific histone inDrosophila, Genetics, 2001, 157: 1293–1298.

    Google Scholar 

  54. Yi, S., Charlesworth, B., A selective sweep associated with a recent gene transpositions inDrosophila Miranda, Genetics, 2000, 156: 1753–1763.

    Google Scholar 

  55. Begun, D. J., Origin and evolution of a new gene descended from alcohol dehydrogenase inDrosophila, Genetics, 1997, 145: 375–382.

    Google Scholar 

  56. Zhang, J., Webb, D. M., Podlaha, O., Accelerated protein evolution and origins of human-specific features:Foxp2 as an example, Genetics, 2002, 162: 1825–1835.

    Google Scholar 

  57. Enard, W., Przeworski, M., Fisher, S. E. et al., Molecular evolution ofFOXP2, a gene involved in speech and language, Nature, 2002, 418: 869–872.

    Article  Google Scholar 

  58. Courseaux, A., Nahon, J. L., Birth of two chimeric genes in the Homimdae lineage, Science, 2001, 291: 1293–1297.

    Article  Google Scholar 

  59. Johnson, M. E., Viggiano, L., Bailey, J. A. et al., Positive selection of a gene family during the emergence of humans and African apes, Nature, 2001, 413: 514–519.

    Article  Google Scholar 

  60. Zhang, J., Rosenberg, H. F., Nei, M., Positive Darwinian selection after gene duplication in primate ribonuclease genes, Proc. Natl. Acad. Sci., 1998, 95: 3708–3713.

    Article  Google Scholar 

  61. Maston, G. A., Ruvolo, M., Chorionic Gonadotropin has a recent origin within primates and an evolutionary history of selection, Mol. Biol. Evol., 2002, 19 (3): 320–335.

    Google Scholar 

  62. Paulding, C. A., Ruvolo, M., Haber, D. A., TheTre2(USP6) oncogene is a hominoid-specific gene, Proc. Natl. Acad. Sci., 2003, 100: 2507–2511.

    Article  Google Scholar 

  63. Javaud, C., Dupuy, F., Mattah, A. et al., The fucosyltransferase gene family: an amazing summary of the underlying mechanisms of gene evolution, Genetica, 2003, 118: 157–170.

    Article  Google Scholar 

  64. Chen, L., Devries, A. L., Cheng, C. H., Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod, Proc. Natl. Acad. Sci., 1997, 94: 3817–3822.

    Article  Google Scholar 

  65. Chen, L., Devries, A. L., Cheng, C. H., Evolution of antifreeze glycoprotein gene from a typsinogen gene in Antarctic notothenioid fish, Proc. Ntal. Acad. Sci., 1997, 94: 3811–3816.

    Article  Google Scholar 

  66. Gogolevskaya, I. K., Kramerov, D. A., Evolutionary history of 4.5SI RNA and indication that it is functional, J. Mol. Evol., 2002, 54: 354–364.

    Google Scholar 

  67. Bergthorsson, U., Adams, K. L., Thomason, B. et al., Widespred horizontal transfer of mitochondrial genes in flowering plants, Nature, 2003, 424: 197–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Wang.

About this article

Cite this article

Li, X., Yang, S., Peng, L. et al. Origin and evolution of new genes. Chin. Sci. Bull. 49, 1681–1686 (2004). https://doi.org/10.1007/BF03184298

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03184298

Keywords

Navigation