Japan Journal of Industrial and Applied Mathematics

, Volume 8, Issue 3, pp 461–486

On Rauzy fractal

  • Shunji Ito
  • Minako Kimura

DOI: 10.1007/BF03167147

Cite this article as:
Ito, S. & Kimura, M. Japan J. Indust. Appl. Math. (1991) 8: 461. doi:10.1007/BF03167147


The boundary of a space tiling set, called the Rauzy fractal, can be constructed by means of the endomorphism θ on a free group of rank 3 according to Dekking’s fractal generating method. Using this method, the Hausdorff dimension of the Rauzy fractal is calculated by\(\frac{{\log \lambda _{\rm E} }}{{log (1/\zeta )}} \mathbin{\lower.3ex\hbox{$\buildrel{\mathbin{\buildrel\scriptstyle.\hfill\over{\smash{\scriptstyle=}\vphantom{_{\scriptstyle x}}}}}\over{\hfill\smash{\scriptstyle\cdot}}$}} 1.09338 \cdots \) where λE is a maximal solution of λ4 - 2λ - 1 = 0, and ζ is a positive solution ofx3+x2+x−1=0.

Key words

fractalspace tilingHausdorff dimension

Copyright information

© JJIAM Publishing Committee 1991

Authors and Affiliations

  • Shunji Ito
    • 1
  • Minako Kimura
    • 1
  1. 1.Department of MathematicsTsuda CollegeKodaira, TokyoJapan