Skip to main content
Log in

Ground-water level, moisture supply, and vegetation in the Netherlands

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The goal of this study was to establish quantitative relationships among vegetation, soil, and ground water that can be used in ecological modeling and engineering. To investigate these relationships, we used data from nature conservation areas in the Netherlands where phreatic ground-water levels had been measured in piezometers for at least five years. The species composition and soil composition of sites near these piezometers were described in detail. The data were used to investigate the relationship between the occurrence of hydrophytes and xerophytes versus average ground-water levels and moisture supply. We found that the distinction between sites dominated by hydrophytes and sites dominated by mesophytes coincides with a mean spring ground-water level of 20–30 cm below surface. Dry sites, dominated by xerophytes, can be defined as sites where under grassland cover moisture deficits will be more than 10 mm in an average year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Bálatová-Tulácková, E. 1968. Grundwasserganglinien und Wiesen-gesellschaften. Acta sc. nat. Brno 2(2):1–37.

    Google Scholar 

  • Belmans, C., J. G. Wesseling, and R. A. Feddes. 1983. Simulation of a cropped soil: SWATRE. Journal of Hydrology 63:271–286.

    Article  Google Scholar 

  • Colenbrander, H. J., K. P. Blumenthal, W. Cramer, and A. Volker. 1989. Water in the Netherlands. TNO Committee on Hydrological Research, The Hague, The Netherlands. Proceedings and Information no. 37.

  • Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-79/31.

    Google Scholar 

  • Davis, M. M., S. W. Sprecher, J. S. Wakeley, and G. R. Best. 1996. Environmental gradients and identification of wetlands in North-Central Florida. Wetlands 16:512–523.

    Google Scholar 

  • Dirkse, G. M., H. M. H. van Melick, and A. Touw. 1988. Checklist of Dutch Bryophytes. Lindbergia 14:167–175.

    Google Scholar 

  • Dirkse, G. M. and B. W. J. M. Kruijsen. 1993. Classification into ecological groups of the mosses and liverworts of the Netherlands. Gorteria 10:1–29. (in Dutch, with English summary)

    Google Scholar 

  • Ellenberg H., H. E. Weber, R. Düll, V. Wirth, W. Werner, and D. Pauliszen. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18, 2nd edition. Goltze, Göttingen.

    Google Scholar 

  • Environmental Laboratory. 1987. U.S. Army Corps of Engineers wetlands delineation manual, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, USA. Technical Report Y-78-1.

    Google Scholar 

  • Etherington, J. R. 1982. Environment and plant ecology. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Gremmen, N. J. M. 1987. Natuurtechnisch model voor de beschrijving en voorspelling van effecten van veranderingen in waterregime op de waarde van een gebied vanuit natuurbehoudsoogpunt. Deel 1: Uitgangspunten en modelconcept. Utrech, Studiecommissie Natuur, Bos en Landschap. Rapport 1e.

  • Hald, A. B. and Petersen. 1992. Soil and vegetation in two Danish fens following changes in water regime. Nordic Journal of Botany 12:707–732.

    Article  Google Scholar 

  • Iversen, J. 1936. Biologische Pflanzentypen als Hilfsmittel in der Vegetationsforschung. Levin and Munksgaard, Kopenhagen, Denmark.

    Google Scholar 

  • Josselyn, M. N. 1990. Relationships between seasonally wet soils and occurence of wetland plants in California. Wetlands 10:7–26.

    Article  Google Scholar 

  • Kemmers, R. H. 1973. Invloed van het grondwaterregime op de vegetatie van een komgrondenreservaat. WLO-Mededelingen 6:9–11.

    Google Scholar 

  • Klapp, E. 1965. Grünlandvegetationen und Standort. Verlag Paul Parey, Berlin and Hamburg, Germany.

    Google Scholar 

  • Landolt, E. 1973. Pflanzen und nasse Standorte. Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule st. Rübel, Zürich 51:8–14.

    Google Scholar 

  • Londo, G. 1975. Nederlandse lijst van hydro-, freato- en afreatofyten. Rijksinstituut voor Natuurbeheer, Leersum, The Netherlands.

    Google Scholar 

  • Londo, G. 1988. Dutch Phreatophytes. Pudoc, Wageningen, The Netherlands. (in Dutch, with English summary).

  • Marquardt, E. 1980. An algorithm for least squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 2:431–441.

    Google Scholar 

  • National Research Council, Committee on Characterization of Wetlands. 1995. Wetlands, charactristics and boundaries. National Acadamy Press. Washington, DC, USA.

    Google Scholar 

  • Runhaar, J., C. L. G. Groen, R. Van der Meijden, and R. A. M. Stevers. 1987. A new division in ecological groups in the flora of the Netherlands. Gorteria 13:277–359. (in Dutch, with English summary)

    Google Scholar 

  • Runhaar, J. 1989. Toetsing van het ecotopensysteem. Deel 2: Rapportage van het veldwerk. CML-mededeling 48b. Centrum voor Milieukunde, Leiden, The Netherlands.

    Google Scholar 

  • Runhaar, J. and H. A. Udo de Haes. 1994. The use of site factors as classification characteristics for ecotopes. p. 139–172.In F. Klijn (ed.) Ecosystem Classification for Environmental Management. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Runhaar, J., C. R. Van Gool and C. L. G. Groen. 1996. Impact of hydrological changes on nature conservation areas in the Netherlands. Biological Conservation 76:269–276.

    Article  Google Scholar 

  • Reed, P. B. 1988. National list of plant species that occur in wetlands: 1988 national summary. U.S. Fish and Wildlife Service, Washington, DC, USA. Biological Report 88 (24).

    Google Scholar 

  • Schimper, A. 1898. Pflanzen-Geographie auf physiologischer Grundlage. Jena, Germany.

  • Spoor, G., J. M. Chapman, and P. B. Leeds-Harrison 1992. Assessment of soil water requirements of wild plants species. p. 137–144.In Drainage and water table control. Proceedings of the 6th International Drainage Symposium. American Society of Agricultural Engineers, Nashville, TN, USA.

    Google Scholar 

  • Tiner, R. W. 1991. The concept of a hydrophyte for wetland identification. BioScience 41:236–247.

    Article  Google Scholar 

  • Tiner, R. W. 1993a. The primary indicators method—a practical approach to wetland recognition and delineation in the United States. Wetlands 13:50–64.

    Google Scholar 

  • Tiner, R. W. 1993b. Response to Watts’ comment. Wetlands 13:311.

    Article  Google Scholar 

  • Tüxen, R. 1954. Pflanzengesellschaften und Grundwasserganglinien. Angew. Pflanzensoziol., Stolzenau/Weser 8:61–98.

    Google Scholar 

  • Van der Meijden, R. 1990. Heukels’ Flora van Nederland. 21. edition. Wolters-Noordhoff, Groningen, The Netherlands.

    Google Scholar 

  • Van der Sluijs, P. and J. J. de Gruijter. 1985. Water table classes: A method to describe seasonal fluctuation and duration of water table classes on Dutch soil maps. Agricultural Water Management. 10:109–125.

    Article  Google Scholar 

  • Verburg, P. H. 1995. De relatie tussen de vochttoestand van de bodem en de vochtindicatie van de vegetatie. Een nadere bepaling van de grens tussen ‘vochtig’ en ‘droog’ binnen het ecotopensysteem. Landbouw-Universiteit Wageningen, Vakgroep Waterhuishouding, Wageningen, The Netherlands. Rapport 62.

    Google Scholar 

  • Walter, H. 1926. Die Anpassungen der Pflanzen an Wassermangel. Das xerophytenproblem in kausal-physiologischer Betrachtung. Naturwissenschaft und Landwirtschaft 9:1–115.

    Google Scholar 

  • Watts, F. C. 1993. Comment on R.W. Tiner: The primary indicators method—a practical aproach to wetland recognition and delineation in the United States. Wetlands 13:311.

    Article  Google Scholar 

  • Witte, J. P. M. and R. Van der Meijden. 1995. Verspreidingskaarten van de botanische kwaliteit in Nederland uit FLORBASE. Gorteria 21:3–59.

    Google Scholar 

  • Witte, J. P. M., F. Klijn, F. A. M. Claessen, C. L. G. Groen, and R. Van der Meijden. 1992. A model to predict and assess the impacts of hydrological changes on terrestrial ecosystems in the Netherlands, and its use in a climate scenario. Wetlands Ecology and Management 2:69–83.

    Article  Google Scholar 

  • Witte, J. P. M., C. L. G. Groen, R. Van der Meijden, and J. G. Nienhuis. 1993. DEMNAT: A national model for the effects of water management on the vegetation. p. 31–51.In J. C. Hooghart and C. W. S. Posthumus (ed.) The use of hydro-ecological models in the Netherlands, TNO Committee on Hydrological Research, Delft, The Netherlands. Proceedings and Information no. 47.

    Google Scholar 

  • Zarzycki, K. 1956. Meadow associations and the ground-water level. Bulletin de l’Academie Polonaise des Sciences. Cl.II, Vol. 4(5): 183–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Runhaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runhaar, H., Witte, F. & Verburg, P. Ground-water level, moisture supply, and vegetation in the Netherlands. Wetlands 17, 528–538 (1997). https://doi.org/10.1007/BF03161519

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161519

Key Words

Navigation