1).

Abe, N., “Feasible learnability of Formal Grammars and the Theory of Natural Language Acquisition,” in*Proceedings of COLING-88*, August 1988.

2).

Angluin, D. and Kharitonov, M., “When Wont’ Membership Queries Help?” in

*Proc. of the 23rd Symposium on Theory of Computing*, ACM Press, New York, NY, pp. 444–454, 1991.

Google Scholar3).

Abe, N. and Mamitsuka, H., “A New Method for Predicting Protein Secondary Structures Based on Stochastic Tree Grammars,” in*Proceedings of the Eleventh International Conference on Machine Learning*, 1994.

4).

Abe, N. and Takeuchi, J., “The ‘Lob-Pass’ Problem and an On-Line Learning Model of Rational Choice,” in

*Proceedings of the Sixth Annual ACM Workshop on Computational Learning Theory*, Morgan Kaufmann, San Mateo, California, August 1993.

Google Scholar5).

Abe, N. and Warmuth, M. K., “On the Computational Complexity of Approximating Probability Distributions by Probabilistic Automata,”

*Machine Learning, 9, 2/3*, pp. 205–260, 1992.

MATHCrossRefGoogle Scholar6).

Brown, M., Hughey, R., Krogh, A., Mian, I. S., Sjolander, K., and Haussler, D., “Using Dirichlet Mixture Priors to Derive Hidden Markov Models for Protein Families,” in*Proceedings of the First International Conference on Intelligent Systems for Molecular Biology*, pp. 47–55, 1993.

7).

Goldman, S., Kearns, M., and Schapire, R., “On the Sample Complexity of Weak Learning,” in

*Proceedings of the 1990 Workshop on Computational Learning Theory*, Morgan Kaufmann, San Mateo, California, August 1990.

Google Scholar8).

Haussler, D., “Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications,”*Information and Computation*,*100*,*1*, September 1992.

9).

Herrnstein, R., “Rational Choice Theory,”

*American Psychologist, 45, 3*, pp. 356–367, 1990.

CrossRefGoogle Scholar10).

Kearns, M. and Seung, S., “Learning from a Population of Hypotheses,” in

*Proceedings of the Sixth Annual ACM Workshop on Computational Learning Theory*, Morgan Kaufmann, San Mateo, California, August 1993.

Google Scholar11).

Kearns, M. and Schapire, R., “Efficient Distribution-Free Learning of Probabilistic Concepts,”*Journal of Computer and System Sciences*,*48*,*3*, June 1994. A special issue on 31st IEEE Conference on Foundations of Computer Science.

12).

Laird, P. D., “Efficient Unsupervised Learning,” in

*Proceedings of the 1988 Workshop on Computational Learning Theory*, Morgan Kaufmann, San Mateo, California, August 1988.

Google Scholar13).

Levinson, S. E., Rabiner, L. R., and Sondhi, M. M., “An Introduction to the Application of the Theory of Probabilistic Functions of a Markov Process to Automatic Speech Recognition,”*The Bell System Technical Journal*,*62*,*4*, April 1983.

14).

Nakamura, A. and Abe, N., “Exact Learning of Linear Combinations of Monotone Terms from Function Value Queries,” in*Theoretical Computer Science, 137*, Elsevier, 1995.

15).

Nakamura, A., Abe, N., and Takeuchi, J., “Efficient Distribution-Free Population Learning of Simple Concepts,” in*Proceedings of the Fifth International Workshop on Algorithmic Learning Theory*, Springer-Verlag, October 1994.

16).

Osherson, D., Stob, M., and Weinstein, S.,*Systems that Learn: An Introduction for Cognitive and Computer Scientists*, MIT Press, 1986.

17).

Paz, A.,*Introduction to Probabilistic Automata*, Academic Press, 1971.

18).

Pollard, D.,*Convergence of Stochastic Processes*, Springer-Verlag, 1984.

19).

Rissanen, J., “Stochastic Complexity and Modeling,”

*The Annals of Statistics, 14, 3*, pp. 1080–1100, 1986.

MATHCrossRefMathSciNetGoogle Scholar20).

Rost, B and Sander, C., “Prediction of Protein Secondary Structure at Better Than 70% Accuracy,”

*J. Mol. Biol., 232*, pp. 584–599, 1993.

CrossRefGoogle Scholar21).

Sakakibara, Y., Brown, M., Underwood, R. C., Mian, I. S., and Haussler, D., “Stochastic Context-Free Grammars for Modeling RNA,” in*Proceedings of the 27th Hawaii International Conference on System Sciences, volume V*, pp. 284–293, 1994.

22).

Schabes, Y., “Stochastic Lexicalized Tree Adjoining Grammars,” in*Proceedings of COLING-92*, pp. 426–432, 1992.

23).

Sloan, R. H., “Computational Learning Theory: New Models and Algorithms,”*Ph.D thesis*, MIT, 1989. Issued as MIT/LCS/TR-448.

24).

Sander, C. and Schneider, R., “Database of Homology-Derived Structures and the Structural Meaning of Sequence Alignment,”

*Proteins: Struct. Funct. Genet., 9*, pp. 56–68, 1991.

CrossRefGoogle Scholar25).

Vitter, J. and Lin, J., “Learning in Parallel,”*Information Computing*, pp. 179–202, 1992.

26).

Vijay-Shanker, K. and Joshi, A. K., “Some Computational Properties of Tree Adjoining Grammars,” in*23rd Meeting of A. C. L.*, 1985.

27).

Yamanishi, K., “A Learning Criterion for Stochastic Rules,”*Machine Learning, 9, 2/3*, a special issue for COLT’90, 1992.

28).

Yamanishi, K. and Konagaya, A., “Learning Stochastic Motifs from Genetic Sequences,” in*the Eighth International Workshop on Machine Learning*, 1991.