, Volume 49, Issue 1, pp 70-79

Carbon-partitioning inArabidopsis is regulated by the fructose 6-phosphate, 2-kinase/fructose 2,6-bisphosphatase enzyme

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


To further elucidate the mechanisms underlying carbon-partitioning in plants, we established an experimental system by generating transgenicArabidopsis lines that overexpress both the fructose 6-phosphate, 2-kinase (F6P,2-K) and the fructose 2,6-bisphosphatase (F26BPase) domains. We also produced knockout transgenic plants for these domains via RNAi and T-DNA tagging. In F6P,2-K overexpressing transgenics, F6P,2-K activity increased slightly and Fru-2,6-P2 levels were elevated by 80%, compared with the wild type (WT). F26BPase activity was similar between the WT and transgenic plants. However, when that domain was overexpressed, F26BPase activity was increased by 70% compared with the WT, whereas F6P,2-K activity was reduced to 85% of the WT level. In knockout and RNAi mutant lines that showed reduced F6P,2-K and F26BPase activities, levels of Fru-2,6-P2 were only between 3 to 7% of those for the WT. In F6P,2-K overexpressing transgenic lines, the levels of starch, hexose, and triose phosphates slightly increased, while sucrose content was marginally reduced. In F26BPase overexpressing plants, however, the levels of soluble sugars and hexose phosphates were slightly increased, but starch and triose phosphate contents declined. Furthermore, compared with the WT, the levels of soluble sugars rose while starch and hexose phosphate quantities decreased in 2-kinase/fructose-2,6-bisphophatase knockout mutants. Therefore, our data reaffirms that Fru-2,6-P2 contributes to the regulation of photosynthetic carbon-partitioning between starch and sucrose inArabidopsis leaves by limiting sucrose synthesis.