The International Journal of Life Cycle Assessment

, 9:295

Comparison between three different LCIA methods for aquatic ecotoxicity and a product environmental risk assessment

Insights from a Detergent Case Study within OMNIITOX
  • Rana Pant
  • Gert Van Hoof
  • Diederik Schowanek
  • Tom C. J. Feijtel
  • Arjan de Koning
  • Michael Hauschild
  • Stig I. Olsen
  • David W. Pennington
  • Ralph Rosenbaum
OMNIITOX: LCA Case Studies

DOI: 10.1007/BF02979419

Cite this article as:
Pant, R., Van Hoof, G., Schowanek, D. et al. Int J LCA (2004) 9: 295. doi:10.1007/BF02979419

Abstract

Background and Objective

In the OMNIITOX project 11 partners have the common objective to improve environmental management tools for the assessment of (eco)toxicological impacts. The detergent case study aims at: i) comparing three Procter &c Gamble laundry detergent forms (Regular Powder-RP, Compact Powder-CP and Compact Liquid-CL) regarding their potential impacts on aquatic ecotoxicity, ii) providing insights into the differences between various Life Cycle Impact Assessment (LCIA) methods with respect to data needs and results and iii) comparing the results from Life Cycle Assessment (LCA) with results from an Environmental Risk Assessment (ERA).

Material and Methods

The LCIA has been conducted with EDIP97 (chronic aquatic ecotoxicity) [1], USES-LCA (freshwater and marine water aquatic ecotoxicity, sometimes referred to as CML2001) [2, 3] and IMPACT 2002 (covering freshwater aquatic ecotoxicity) [4]. The comparative product ERA is based on the EU Ecolabel approach for detergents [5] and EUSES [6], which is based on the Technical Guidance Document (TGD) of the EU on Environmental Risk Assessment (ERA) of chemicals [7]. Apart from the Eco-label approach, all calculations are based on the same set of physico-chemical and toxicological effect data to enable a better comparison of the methodological differences. For the same reason, the system boundaries were kept the same in all cases, focusing on emissions into water at the disposal stage.

Results and Discussion

Significant differences between the LCIA methods with respect to data needs and results were identified. Most LCIA methods for freshwater ecotoxicity and the ERA see the compact and regular powders as similar, followed by compact liquid. IMPACT 2002 (for freshwater) suggests the liquid is equally as good as the compact powder, while the regular powder comes out worse by a factor of 2. USES-LCA for marine water shows a very different picture seeing the compact liquid as the clear winner over the powders, with the regular powder the least favourable option. Even the LCIA methods which result in die same product ranking, e.g. EDIP97 chronic aquatic ecotoxicity and USES-LCA freshwater ecotoxicity, significantly differ in terms of most contributing substances. Whereas, according to IMPACT 2002 and USES-LCA marine water, results are entirely dominated by inorganic substances, the other LCIA methods and the ERA assign a key role to surfactants. Deviating results are mainly due to differences in the fate and exposure modelling and, to a lesser extent, to differences in the toxicological effect calculations. Only IMPACT 2002 calculates the effects based on a mean value approach, whereas all other LCIA methods and the ERA tend to prefer a PNEC-based approach. In a comparative context like LCA the OMNIITOX project has taken the decision for a combined mean and PNEC-based approach, as it better represents the ‘average’ toxicity while still taking into account more sensitive species. However, the main reason for deviating results remains in the calculation of the residence time of emissions in the water compartments.

Conclusion and Outlook

The situation that different LCIA methods result in different answers to the question concerning which detergent type is to be preferred regarding the impact category aquatic ecotoxicity is not satisfactory, unless explicit reasons for the differences are identifiable. This can hamper practical decision support, as LCA practitioners usually will not be in a position to choose the ’right’ LCIA method for their specific case. This puts a challenge to the entire OMNIITOX project to develop a method, which finds common ground regarding fate, exposure and effect modelling to overcome the current situa-tion of diverging results and to reflect most realistic conditions.

Keywords

Aquatic ecotoxicitycase studiesdetergentsecotoxicityLCIAOMNIITOXsurfactantstoxicity

Copyright information

© Ecomed Publishers 2004

Authors and Affiliations

  • Rana Pant
    • 1
  • Gert Van Hoof
    • 1
  • Diederik Schowanek
    • 1
  • Tom C. J. Feijtel
    • 1
  • Arjan de Koning
    • 2
  • Michael Hauschild
    • 3
  • Stig I. Olsen
    • 3
  • David W. Pennington
    • 4
  • Ralph Rosenbaum
    • 4
  1. 1.Procter & Gamble EurocorStrombeek-BeverBelgium
  2. 2.Centre of Environmental Science (CML)Leiden UniversityRA LeidenThe Netherlands
  3. 3.Department of Manufacturing Engineering and ManagementTechnical University of Denmark (DTU)LyngbyDenmark
  4. 4.Industrial Ecology—Life Cycle Systems, Swiss Federal Institute of Technology Lausanne (EPFL)LausanneSwitzerland