Skip to main content
Log in

Bone tissue engineering using marrow stromal cells

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bone tissue defects cause a significant socioeconomic problem, and bone is the most frequently transplanted tissue beside blood. Autografting is considered the gold standard treatment for bone defects, but its utility is limited due to donor site morbidity. Hence much research has focused on bone tissue engineering as a promising alternative method for repair of bone defects. Marrow stromal cells (MSCs) are considered to be potential cell sources for bone tissue engineering. In bone tissue engineering using MSCs, bone is formed through intramembranous and endochondral ossification in response to osteogenic inducers. Angiogenesis is a complex process mediated by multiple growth factors and is crucial for bone regeneration. Vascular endothelial growth factor plays important roles in bone tissue regeneration by promoting the migration and differentiation of osteoblasts, and by inducing angiogenesis. Scaffold materials used for bone tissue engineering include natural components of bone, such as calcium phosphate and collagen I, and biodegradable polymers such as poly(lactide-coglycolide) However, ideal scaffolds for bone tissue engineering have yet to be found. Bone tissue engineering has been successfully used to treat bone defects in several human clinical trials to regenerate bone defects. Through investigation of MSC biology and the development of novel scaffolds, we will be able to develop advanced bone tissue engineering techniques in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rose, F. R. and R. O. Oreffo (2002) Bone tissue engineering: hope vs hype.Biochem. Biophys. Res. Commun. 292 1–7.

    Article  CAS  Google Scholar 

  2. Bauer, T. W. and G. F. Muschler (2000) Bone graft materials. An overview of the basic science.Clin. Orthop. Relat. Res. 371: 10–27.

    Article  Google Scholar 

  3. Xu, H. H. and C. G. Simon, Jr. (2005) Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility.Biomaterials 26: 1337–1348.

    Article  CAS  Google Scholar 

  4. Derubeis, A. R. and R. Cancedda (2004) Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances.Ann. Biomed. Eng. 32: 160–165.

    Article  Google Scholar 

  5. Caplan, A. I. and S. P. Bruder (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century.Trends Mol. Med. 7: 259–264.

    Article  CAS  Google Scholar 

  6. Petite, H., V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin (2000) Tissue-engineered bone regenerationNat. Biotechnol. 18: 959–963.

    Article  CAS  Google Scholar 

  7. Shang, Q., Z. Wang, W. Liu, Y. Shi, L. Cui, and Y. Cao (2001) Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells.J. Craniofac. Surg. 12: 586–593: discussion 594–595.

    Article  CAS  Google Scholar 

  8. Kim, H., H. Suh, S. A. Jo, H. W. Kim, J. M. Lee, E. H. Kim, Y. Reinwald, S. H. Park, B. H. Min, and I. Jo (2005)In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate.Biochem. Biophys. Res. Commun. 332: 1053–1060.

    Article  CAS  Google Scholar 

  9. Friedenstein, A. J., K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova (1968) Heterotopic of bone marrow Analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation 6: 230–247.

    Article  CAS  Google Scholar 

  10. Friedenstein, A. J., J. F. Gorskaja, and N. N. Kulagina (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs.Exp. Hematol. 4: 267–274.

    CAS  Google Scholar 

  11. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak (1999) Multilineage potential of adult human mesenchymal stem cells.Science 284: 143–147.

    Article  CAS  Google Scholar 

  12. Kuznetsov, S. A., P. H. Krebsbach, K. Satomura, J. Kerr, M. Riminucci, D. Benayahu, and P. G. Robey (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantationin vivo.J. Bone Miner. Res. 12: 1335–1347.

    Article  CAS  Google Scholar 

  13. Muraglia, A., R. Cancedda, and R. Quarto (2000) Clonal mesenchymal progenitors from human bone marrow differentiatein vitro according to a hierarchical model.J. Cell Sci. 113 (Pt 7): 1161–1166.

    CAS  Google Scholar 

  14. Gregory, C. A., J. Ylostalo, and D. J. Prockop (2005) Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: a two-stage hypothesis for regulation of MSC fate.Sci. STKE 2005: pe37.

    Article  Google Scholar 

  15. Digirolamo, C. M., D. Stokes, D. Colter, D. G. Phinney, R. Class, and D. J. Prockop (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate.Br. J. Haematol. 107: 275–281.

    Article  CAS  Google Scholar 

  16. Shi, S., S. Gronthos, S. Chen, A. Reddi, C. M. Counter, P. G. Robey, and C. Y. Wang (2002) Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression.Nat. Biotechnol. 20: 587–591.

    Article  CAS  Google Scholar 

  17. Simonsen, J. L., C. Rosada, N. Serakinci, J. Justesen, K. Stenderup, S. L. Rattan, T. G. Jensen, and M. Kassem (2002) Telomcrase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells.Nat. Biotechnol. 20: 592–596.

    Article  CAS  Google Scholar 

  18. Gronthos, S., S. Chen, C. Y. Wang, P. G. Robey, and S. Shi (2003) Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin.J. Bone Miner. Res. 18: 716–722.

    Article  CAS  Google Scholar 

  19. Sekiya, I., B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui, and D. J. Prockop (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality.Stem Cells 20: 530–541.

    Article  Google Scholar 

  20. Colter, D. C., I. Sekiya, and D. J. Prockop (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells.Proc. Natl. Acad. Sci. USA 98: 7841–7845.

    Article  CAS  Google Scholar 

  21. Colter, D. C., R. Class, C. M. DiGirolamo, and D. J. Prockop (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow.Proc. Natl. Acad Sci. USA 97: 3213–3218.

    Article  CAS  Google Scholar 

  22. Kim, H., J. H. Lee, and H. Suh (2003) Interaction of mesenchymal stem cells and osteoblasts forin vitro osteogenesis.Yonsci Med. J. 44: 187–197.

    Google Scholar 

  23. Kim, H., H. W. Kim, and H. Suh (2003) Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchy mal stem cells.Biomaterials 24: 4671–4679.

    Article  CAS  Google Scholar 

  24. Jorgensen, N. R., Z. Henriksen, O. H. Sorensen, and R. Civitelli (2004) Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype; validation of anin vitro model for human bone marrow-derived primary osteoblasts.Steroids 69: 219–226.

    Article  CAS  Google Scholar 

  25. Cheng, S. L., J. W. Yang, L. Rifas, S. F. Zhang, and L. V. Avioli (1994) Differentiation of human bone marrow osteogenic stromal cellsin vitro: induction of the osteoblast phenotype by dexamethasone.Endocrinology 134: 277–286.

    Article  CAS  Google Scholar 

  26. Huang, W., B. Carlsen, I. Wulur, G. Rudkin, K. Ishida, B. Wu, D. T. Yamaguchi, and T. A. Miller (2004) BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required forin vitro bone formation in a PLGA scaffold.Exp. Cell Res. 299: 325–334.

    Article  CAS  Google Scholar 

  27. Bruder, S. P., K. H. Kraus, V. M. Goldberg, and S. Kadiyala (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects.J. Bone Joint Surg. Am. 80: 985–996.

    CAS  Google Scholar 

  28. Noel, D., D. Gazit, C. Bouquet, F. Apparailly, C. Bony, P. Plence, V. Millet, G. Turgeman, M. Perricaudet, J. Sany, and C. Jorgensen (2004) Short-term BMP-2 expression is sufficient forin vivo osteochondral differentiation of mesenchymal stem cells.Stem Cells 22: 74–85.

    Article  CAS  Google Scholar 

  29. Diefenderfer, D. L., A. M. Osyczka, G. C. Reilly, and P. S. Leboy (2003) BMP responsiveness in human mesenchymal stem cells.Connect. Tissue Res. 44 Suppl 1: 305–311.

    Article  CAS  Google Scholar 

  30. Osyczka, A. M., D. L. Diefenderfer, G. Bhargave, and P. S. Leboy (2004) Different effects of BMP-2 on marrow stromal cells from human and rat bone.Cells Tissues Organs 176: 109–119.

    Article  CAS  Google Scholar 

  31. Kronenberg, H. M. (2003) Developmental regulation of the growth plate.Nature 423: 332–336.

    Article  CAS  Google Scholar 

  32. Chung, U. I., H. Kawaguchi, T. Takato, and K. Nakamura (2004) Distinct osteogenic mechanisms of bones of distinct origins.J. Orthop. Sci. 9: 410–414.

    Article  CAS  Google Scholar 

  33. Choi, I. H., C. Y. Chung, T. J. Cho, and W. J. Yoo (2002) Angiogenesis and mineralization during distraction osteogenesis.J. Kor. Med. Sci. 17: 435–447.

    Google Scholar 

  34. Einhorn, T. A. (2005) The science of fracture healing.J. Orthop. Trauma 19 Suppl: S4-S6.

    Article  Google Scholar 

  35. Thompson, Z., T. Miclau, D. Hu, and J. A. Helms (2002) A model for intramembranous ossification during fracture healing.J. Orthop. Res. 20: 1091–1098.

    Article  CAS  Google Scholar 

  36. Sampath, T. K., J. C. Maliakal, P. V. Hauschka, W. K. Jones, H. Sasak, R. F. Tucker, K. H. White, J. E. Coughlin, M. M. Tucker, R. H. Panget al. (1992) Recombinant human osteogenic protein-1 (hOP-1) induces new bone formationin vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiationin vitro.J. Biol. Chem. 267: 20352–20362.

    CAS  Google Scholar 

  37. Chen, Y., K. M. Cheung, H. F. Kung, J. C. Leong, W. W. Lu, and K. D. Luk (2002)In vivo new bone formation by direct transfer of adenoviral-mediated bone morphogenetic protein-4 gene.Biochem. Biophys. Res. Commun. 298: 121–127.

    Article  CAS  Google Scholar 

  38. Simmons, C. A., E. Alsberg, S. Hsiong, W. J. Kim, and D. J. Mooney (2004) Dual growth factor delivery and controlled scaffold degradation enhancein vivo bone formation by transplanted bone marrow stromal cells.Bone 35: 562–569.

    Article  CAS  Google Scholar 

  39. Sekiya, I., B. L. Larson, J. T. Vuoristo, R. L. Reger, and D. J. Prockop (2005) Comparison of effect of BMP-2.-4 and-6 onin vitro cartilage formation of human adult stem cells from bone marrow stroma.Cell Tissue Res. 320: 269–276.

    Article  CAS  Google Scholar 

  40. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo (1998)In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.Exp. Cell Res. 238: 265–272.

    Article  CAS  Google Scholar 

  41. Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cellsin vitro.J. Cell. Biochem. 64: 295–312.

    Article  CAS  Google Scholar 

  42. Schacke, H., W. D. Docke, and K. Asadullah (2002) Mechanisms involved in the side effects of glucocorticoids.Pharmacol. Ther. 96: 23–43.

    Article  CAS  Google Scholar 

  43. Attisano, L. and J. L. Wrana (2002) Signal transduction by the TGF-beta superfamily.Science 296: 1646–1647.

    Article  CAS  Google Scholar 

  44. Childs, S. G. (2005) Osteonecrosis: death of bone cells.Orthop. Nurs. 24: 295–301; quiz 302–303.

    Google Scholar 

  45. Hausman, M. R., M. B. Schaffler, and R. I. Majeska (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis.Bone 29: 560–564.

    Article  CAS  Google Scholar 

  46. Fang, T. D., A. Salim, W. Xia, R. P. Nacamuli, S. Guccione, H. M. Song, R. A. Carano, E. H. Filvaroff, M. D. Bednarski, A. J. Giaccia, and M. T. Longaker (2005) Angiogenesis is required for successful bone induction during distraction osteogenesis.J. Bone Miner. Res. 20: 1114–1124.

    Article  CAS  Google Scholar 

  47. Maes, C., P. Carmeliet, K. Moermans, I. Stockmans, N. Smets, D. Collen, R. Bouillon, and G. Carmeliet (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188.Mech. Dev. 111: 61–73.

    Article  CAS  Google Scholar 

  48. Gerber, H. P. and N. Ferrara (2000) Angiogenesis and bone growth.Trends Cardiovasc. Med. 10: 223–228.

    Article  CAS  Google Scholar 

  49. Risau, W. (1997) Mechanisms of angiogenesis.Nature 386: 671–674.

    Article  CAS  Google Scholar 

  50. Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash (2000) Vascular-specific growth factors and blood vessel formation.Nature 407: 242–248.

    Article  CAS  Google Scholar 

  51. Polverini, P. J. (2002) Antiogenesis in health and disease: insights into basic mechanisms and therapeutic opportunities.J. Dent. Educ. 66: 962–975.

    Google Scholar 

  52. Street, J., M. Bao, L. deGuzman, S. Bunting, F. V. Peale, Jr., N. Ferrara, H. Steinmetz, J. Hoeffel, J. L. Cleland, A. Daugherty, N. van Bruggen, H. P. Redmond, R. A. Carano, and E. H. Filvaroff (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.Proc. Natl. Acad. Sci. USA 99: 9656–9661.

    Article  CAS  Google Scholar 

  53. Huang, Y. C., D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney (2005) Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration.J. Bone Miner. Res. 20: 848–857.

    Article  CAS  Google Scholar 

  54. Kaigler, D., Z. Wang, K. Horger, D. J. Mooney, and P. H. Krebsbach (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects.J. Bone Miner. Res. 21: 735–744.

    Article  CAS  Google Scholar 

  55. Leach, J. K., D. Kaigler, Z. Wang, P. H. Krebsbach, and D. J. Mooney (2006) Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.Biomaterials 27: 3249–3255.

    Article  CAS  Google Scholar 

  56. Kaigler, D., P. H. Krebsbach, P. J. Polverini, and D. J. Mooney (2003) Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells.Tissue Eng. 9: 95–103.

    Article  CAS  Google Scholar 

  57. Mayr-Wohlfart, U., J. Waltenberger, H. Hausser, S. Kessler, K. P. Gunther, C. Dehio, W. Puhl, and R. E. Brenner (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts.Bone 30: 472–477.

    Article  CAS  Google Scholar 

  58. Zelzer, E., W. McLean, Y. S. Ng, N. Fukai, A. M. Reginato, S. Lovejoy, P. A. D'Amore, and B. R. Olsen (2002) Skeletal defects in VEGF (120/120) mice reveal multiple roles for VEGF in skeletogenesis.Development 129: 1893–1904.

    CAS  Google Scholar 

  59. Bouletreau, P. J., S. M. Warren, J. A. Spector, Z. M. Peled, R. P. Gerrets, J. A. Greenwald, and M. T. Longaker (2002) Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing.Plast. Reconstr. Surg. 109: 2384–2397.

    Article  Google Scholar 

  60. El-Ghannam, A. (2005) Bone reconstruction: from bioceramics to tissue engineering.Expert Rev. Med. Devices 2: 87–101.

    Article  Google Scholar 

  61. Whang, K., D. C. Tsai, E. K. Nam, M. Aitken, S. M. Sprague, P. K. Patel, and K. E. Healy (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds.J. Biomed. Mater. Res. 42: 491–499.

    Article  CAS  Google Scholar 

  62. Hsiong, S. X. and D. J. Mooney (2006) Regeneration of vascularized bone.Periodontol. 2000 41: 109–122.

    Article  Google Scholar 

  63. Kotoh, H., T. Kitakoji, H. Tsuchiya, H. Mitsuyama, H. Nakamura, M. Katoh, and N. Ishiguro (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis: a preliminary result of three cases.Bone 35: 892–898.

    Article  Google Scholar 

  64. Schimming, R. and R. Schmelzeisen (2004) Tissue-engineered bone for maxillary sinus augmentation.J. Oral Maxillofac. Surg. 62: 724–729.

    Article  Google Scholar 

  65. Vacanti, C. A., L. J. Bonassar, M. P. Vacanti, and J. Shufflebarger (2001) Replacement of an avulsed phalanx with tissue-engineered bone.N. Engl. J. Med. 344: 1511–1514.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyongbum Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, I., Lee, J.M., Suh, H. et al. Bone tissue engineering using marrow stromal cells. Biotechnol. Bioprocess Eng. 12, 48–53 (2007). https://doi.org/10.1007/BF02931803

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931803

Keywords

Navigation