, Volume 12, Issue 2, pp 289-324

Lipschitz selections of set-valued mappings and Helly’s theorem

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We prove a Helly-type theorem for the family of all m-dimensional convex compact subsets of a Banach space X. The result is formulated in terms of Lipschitz selections of set-valued mappings from a metric space (M, ρ) into this family.

Let M be finite and let F be such a mapping satisfying the following condition: for every subset M′ ⊂ M consisting of at most 2m+1 points, the restriction F¦M′ of F to M′ has a selection fM′ (i. e., fM′(x) ∈ F(x) for all x ∈ M′) satisfying the Lipschitz condition ‖ƒM′(x) − ƒM′(y)‖X ≤ ρ(x, y), x, y ∈ M′. Then F has a Lipschitz selection ƒ: M → X such that ‖ƒ(x) − ƒ(y)‖X ≤ γρ(x,y), x, y ∈ M where γ is a constant depending only on m and the cardinality of M. We prove that in general, the upper bound of the number of points in M′, 2m+1, is sharp.

If dim X = 2, then the result is true for arbitrary (not necessarily finite) metric space. We apply this result to Whitney’s extension problem for spaces of smooth functions. In particular, we obtain a constructive necessary and sufficient condition for a function defined on a closed subset of R 2 to be the restriction of a function from the Sobolev space W 2 (R 2).A similar result is proved for the space of functions on R 2 satisfying the Zygmund condition.

Communicated by Yoram Sagher