[1]

Ahlfors, L.V.

*Complex Analysis*. Third Ed., McGraw-Hill, New York, 1979.

MATH[2]

Branner, B. The Mandelbrot set,

*Proc. Symp. Appl. Math.*, AMS,

**39**, 75–105, (1989).

MathSciNet[3]

Douady, A. and Hubbard, J.H. Étude dynamique des polynômes complexes I-II (also referred to as**The Orsay Notes**)*Publ. Math.*, Orsay, (1984).

[4]

Douady, A. and Hubbard, J.H. On the dynamics of polynomial-like mappings,

*Ann. Sci. Éc. Norm. Super.*,

**18**, 287–343, 1985.

MathSciNetMATH[5]

Douady, A. Algorithms for computing angles in the Mandelbrot set,*Chaotic Dynamics and Fractals*, Barnsley, M.F. and Demko, S.G., Eds., Atlanta, Academic Press, 155–168, 1986.

[6]

Douady, A. Does a Julia set depend continuously on the polynomial,

*Proc. Symp. Appl. Math. AMS*,

**49**, 91–138, (1994).

MathSciNet[7]

Goldberg, L.R. and Milnor, J. Fixed points of polynomial maps. II: Fixed point portraits,

*Ann. Sci. Éc. Norm. Super.*,

**26**, 51–98,(1993).

MathSciNetMATH[8]

Grispolakis, J., Mayer, J.C., and Oversteegen, L.G. Building blocks for Julia sets,*Trans. AMS*, to appear.

[9]

Hubbard, J.H. Local connectivity of Julia sets and bifurcation loci: Three theorems of J.-C. Yoccoz,*Topological Methods in Modern Mathematics*, Publish or Perrish, 467–511/375–378, 1993.

[10]

Jiang, Y. The renormalization method and quadratic-like maps*MSRI*, preprint No. 081-95, (revised), Berkely, 1995.

[11]

Jiang, Y. Local connectivity of the Mandelbrot set at certain infinitely renormalizable points,*MSRI*, preprint No. 063-95, (revised), Berkely, 1995.

[12]

Kiwi, J. Non-accessible critical points of Cremer polynomials,*IMS at StonyBrook*, preprint, 1995.

[13]

Levin, G. Disconnected Julia sets and rotation sets,*Institute of Math.*, The Hebrew University of Jerusalem, revised version of preprint No. 15, 1991/1992, May 1993.

[14]

Lyubich, M. Geometry of quadratic polynomials: Moduli, rigidity and local connectivity,*IMS at StonyBrook*, preprint, 1993.

[15]

Mayer, J. Complex dynamics and continuum theory,*Continua with the Houston Problem Book*, Cook, H., et al., Eds., Marcel-Dekker, 1995.

[16]

McMullen, C.T. Complex dynamics and renormalization,*Ann. Math. Studies*, Study 135, Princeton University Press, Princeton, NJ, (1994).

[17]

Milnor, J. Dynamics in one complex variable: Introductory lectures,*IMS at StonyBrook*, preprint, #1990/5, 1990.

[18]

Milnor, J. Local connectivity of Julia sets: Expository lectures,*IMS at StonyBrook*, preprint, #1992/11, 1992.

[19]

Perez-Marco, R. Topology of Julia sets and hedgehogs,*Ergod. Th. and Dynam. Sys.*, 1998.

[20]

Pommerenke, Ch.*Boundary Behavior of Conformai Maps.* GMV,**299**, Springer-Verlag, 1992.

[21]

Sørensen, D.E.K. Complex dynamical systems: Rays and non-local connectivity, Ph.D. thesis, MAT-DTU, 1994.

[22]

Sørensen, D.E.K. Accumulation theorems for quadratic polynomials,

*Ergod. Th. Dynam. Sys.*,

**16**, 555–590, (1996).

CrossRef[23]

Sørensen, D.E.K. Describing quadratic Cremer point polynomials by parabolic perturbations,

*Ergod. Th. Dynam. Sys.*,

**18**, 739–758, (1998).

CrossRef