Global Mizohata structures Authors Howard Jacobowitz Department of Mathemetics Rutgers University Article

Received: 18 December 1991 DOI :
10.1007/BF02921581

Cite this article as: Jacobowitz, H. J Geom Anal (1993) 3: 153. doi:10.1007/BF02921581
Abstract The Mizohata partial differential operator is generalized to global structures on compact two-dimensional manifolds. A generalization of the Hopf Theorem on vector fields is used to show that a first integral can exist if and only if the genus is even. The Mizohata structures on the sphere are classified by the diffeomorphism group of the circle modulo the Moebius subgroup and a necessary and sufficient condition, expressed in terms of the associated diffeomorphism, is given for the existence of a first integral.

Math Subject Classification 35F05 58G03

Key Words and Phrases CR diffeomorphism group of the circle Euler characteristic Hopf Theorem global differential operator Mizohata Moebius transformation nonsolvable This work supported in part by NSF Grant DMS 9100383 to the Institute for Advanced Study.

References [Ak]

Akahori. A new approach to the local embedding theorem of CR-structures. Memoirs of the AMS, No. 366 (1987).

[Be]

Bell, S. Mapping problems in complex analysis and the

\(\overline \partial \) problem. Bull. A.M.S.

22 , 233–259 (1990).

CrossRef MATH [BCH]

Bergamasco, A., Cordaro, P., and Hounie, J. Global properties of a class of vector fields in the plane. J. Diff. Eq.

24 , 179–199 (1988).

CrossRef MathSciNet [BdM]

Boutet de Monvel, L. Intégration des équations de Cauchy-Riemann induites formelles Séminaire Goulaouie-Lions-Schwartz, Exposé IX, 1974–1975.

[BEM]

Brooks, B., Eliashberg, Y., and McMullen, C. The spectral geometry of flat disks. Duke Math. J.

61 , 119–131 (1990).

CrossRef MathSciNet MATH [Ch]

Chern, S. S. Curves and surfaces in Euclidean space. In: Studies in Global Geometry and Analysis, edited by S. S. Chern. Mathematical Association of America 1967.

[HJ]

Hanges, N., and Jacobowitz, H. Involutive structures on compact manifolds. Preprint.

[Hi]

Hille, E. Analytic Function Theory. Vol. 2. Chelsea Publishing Co. 1973.

[Ho]

Hounie, J. Mizohata structures on the sphere. Trans. AMS., to appear.

[Ho1]

Hounie, J. Nonexistence of a homotopy formula for a Mizohata complex inR
^{3} . Personal communication.

[HM]

Hounie, J., and Malagutti, P. Local integrability of Mizohata structures. Transactions A.M.S., to appear.

[Ja]

Jacobowitz, H. Homogeneous solvability and CR structures. Notas de Curso No. 25, Universidade Federal de Pernambuco, Recife, Brazil (1988).

[Ku]

Kuranishi, M. Strongly pseudoconvex CR structures over small balls, III. Annals Math.

116 , 249–330 (1982).

CrossRef MathSciNet [Mi]

Milnor, J. Topology from the Differentiable Viewpoint. Charlottesville, VA: University Press of Virginia, 1965.

MATH [Ni]

Nirenberg, L. Lectures on Linear Partial Differential Equations. Providence, RI: American Mathematical Society 1973.

MATH [NR]

Nagel, A., and Rosay, J. P. Approximate local solutions of ∂

_{b} , but nonexistence of homotopy formulas for (0,1) forms on hypersurfaces in C

^{3} . Duke Math. J.

58 , 823–827 (1989).

CrossRef MathSciNet MATH [Os]

Osborrn, H. Vector Bundles. New York: Academic Press 1982.

[Sj]

Sjöstrand, J. Note on a paper of F. Treves concerning Mizohata type operators. Duke Math. J.

47 , 601–608 (1980).

CrossRef MathSciNet MATH [Ti]

Titus, C. The combinatorial topology of analytic functions on the boundary of a disk.

Acta Math.
106 , 45–64 (1961).

CrossRef MathSciNet MATH [Tr1]

Treves, F. Remarks about certain first-order linear PDE in two variables. Comm. PDE

5 , 381–125 (1980).

MathSciNet CrossRef [Tr2]

Treves, F. Introduction to Pseudodifferential and Fourier Integral Operators. Vol. 2. New York: Plenum Press 1980.

MATH