Skip to main content
Log in

Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance

  • Reviews
  • Published:
Chinese Science Bulletin

Abstract

rd29A gene ofArabidopsis encodes a LEA-like hydrophilic protein, its expression is induced by drought, high-salt and cold stress. In the promoter region ofrd29A gene, there are 2 DREcis-acting elements involved in responses to these environmental stresses. 5 cDNAs (DREB1A∼C andDREB2A∼B) encoding DREB transcription factors, which specifically bind to DRE element and control the expression of reporter gene under drought, high-salt and stress, have been isolated by One-Hybrid screening method and with DRE element ofrd29A promoter. DREB transcription factors and DRE element function in signal transduction of drought, high-salt and cold stress. One DREB transcription factor can control the expression of several target functional genes involved in plant tolerance to drought, high-salt and cold stress. Thus, it may be an effective strategy to achieve ideal, multiple and fundamental effect for improving plant stress-resistance by DREB gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shinozaki, K., Yumaguchi-Shinozaki, K., Molecular responses to drought and cold stress, Curr. Opin. Biotechnol., 1996, 7: 161.

    Article  PubMed  CAS  Google Scholar 

  2. Thomashow, M. K.Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance, inArabidopsis (eds. Meyerowitz, E., Somerville, C.), New York: Cold Spring Harbor Laboratory Press, 1994, 807.

    Google Scholar 

  3. Shinzaki, K., Yamaguchi-Shinozaki, K., Gene expressing and signal transduction in water-stress response, Plant Physiol., 1997, 115: 327.

    Article  Google Scholar 

  4. Ingram,.J., Bartels, D., The molecular basis of dehydration tolerance in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996. 47: 377.

    Article  PubMed  CAS  Google Scholar 

  5. Bray, E. A., Plant responses to water deficit, Trends in Plant Science, 1997, 2: 48.

    Article  Google Scholar 

  6. Urao, T., Yakubo, B., Yamaguchi-Shinozaki, K. et al., Stress-responsive expression of genes for two-comonent response regulator-like proteins inArabidopsis thalinan, FEBS Letters, 1998, 427(2):175.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, J. S., Xie, C. Liu, F. et al., A novel tobacco gene coding for a product similar to baterial two-component regulators, Chinese Science Bulletin, 1999, 44(11): 1025.

    Article  CAS  Google Scholar 

  8. Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S. et al., Molecular cloning and characterization of nine cDNAs for genes that are responsive 10 desiccation inArabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein, Plant Cell Physiol., 1992, 33: 217.

    CAS  Google Scholar 

  9. Yamaguchi-Shinozaki, K., Shinozaki, K., A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress, Plant Cell, 1994, 6: 251.

    Article  PubMed  CAS  Google Scholar 

  10. Liu, Q., Kasuga, M. Sakuma, Y. et al., Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expressionin Arabidopsis, Plant Cell, 1998, 10: 1391.

    Article  PubMed  CAS  Google Scholar 

  11. Kasuga, M., Liu, Q., Miura, S. et al., Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor, Nature Biotechnology, 1999, 17: 287.

    Article  PubMed  CAS  Google Scholar 

  12. Iwasaki, T., Kiyosue, T., Yamaguchi-Shinozaki, K. et al., The dehydration-inducible rdl7 (cor47) gene and its promoter region inArabidopsis thaliana, Plant Physiol., 1997, 115: 1287.

    Article  Google Scholar 

  13. Wang, H., Datla, R., Georges, F. et al., Promoters fromkin 1 andcor 6.6, two homologousArabidopsis thaliana genes: Transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration, Plant Mol. Biol., 1995, 28:605.

    Article  PubMed  CAS  Google Scholar 

  14. Baker, S. S., Wilhelm, K. S., Thomashow, M. F., The 5′-region ofArabidopsis thaliana corl5a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression, Plant Mol. Biol., 1994, 24: 701.

    Article  PubMed  CAS  Google Scholar 

  15. Jiang, C., Lu, B., Singh, J., Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winterBrassica napus, Plant Mol. Biol., 1996, 30: 679.

    Article  PubMed  CAS  Google Scholar 

  16. Li, J. J., Herskowitz, I., Isolation of ORC6, a component of the yeast origin of recognition complex by a one-hybrid system, Science, 1993, 262: 1870.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, M. M., Reed, R. R., Molecular cloning of the olfactory neuronal transcription factor OLF-1 by genetic selection in yeast. Nature, 1993, 364: 121.

    Article  PubMed  CAS  Google Scholar 

  18. Jofuku, K. D., den Boer, B. G. W., Van Montagu, M. et al., Control ofArabidopsis flower and seed development by the homeotic gene APETALA2, Plant Cell, 1994, 6: 1211.

    Article  PubMed  CAS  Google Scholar 

  19. Ohme-Takagi, M., Shinshi, H., Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element, Plant Cell, 1995, 7: 173.

    Article  PubMed  CAS  Google Scholar 

  20. Stockinger, E. J., Gilmour, S. J., Thomashow, M. F.,Arabidopsis thaliana CBF1 encodes and AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in respnses to low temperature and water deficit, Proc. Natl. Acad. Sci. USA, 1997, 94: 1035.

    Article  PubMed  CAS  Google Scholar 

  21. Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G. et al., Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance, Science, 1998, 280: 104.

    Article  PubMed  CAS  Google Scholar 

  22. Dure, L. et al., Common amino acid sequence domains among the LEA proteins of higher plants, Plant Mol. Biol., 1989, 12:475.

    Article  CAS  Google Scholar 

  23. Artus, N. N. et al., Constitutive expression of the cold-regulatedArabidopsis thaliana COR15a gene affects both chloroplasl and protoplast freezing tolerance, Proc. Natl. Acad. Sci. USA, 1996, 93: 13404.

    Article  PubMed  CAS  Google Scholar 

  24. Drews, G. N., Bowman, J. L., Meyerowitz, E. M., Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the.APETALA2 product, Cell, 1991, 65: 991.

    Article  PubMed  CAS  Google Scholar 

  25. Leon-Kloosterziel, K. M., Keijzer, C. J., Koornneef, M., A seed shape mutant of Arabidopsis that is affected in integument development, Plant Cell, 1994, 6: 385.

    Article  PubMed  Google Scholar 

  26. Wilson, K., Long, D., Swinburne, J. et al., A dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2, Plant Cell, 1996, 8: 659.

    Article  PubMed  CAS  Google Scholar 

  27. Elliott, R. C., Betzner, A. S., Huttner, E. et al., AINTEGUMENTA, an APETALA2-like gene ofArabidopsis with pleiotropic roles in ovule development and floral organ growth, Plant Cell, 1996, 8: 155.

    Article  PubMed  CAS  Google Scholar 

  28. Okamuro, J. K., Caster, B., Villarroel, R. et al., The AP2 domain of APETALA2 defines a large new family of DNA binding proteins inArabidopsis, Proc. Natl. Acad. Sci. USA, 1997, 94: 7076.

    Article  PubMed  CAS  Google Scholar 

  29. Klucher, K. M., Chow, H., Reiser, L. et al., The AINTEGUMENTA gene ofArabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2, Plant Cell, 1996, 8: 137.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou, J. M., Tang, X. Y., Martin, G. B., The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes, EMBO J., 1997, 16: 3207.

    Article  PubMed  CAS  Google Scholar 

  31. Leubnermetzger, G., Petruzzelli, L., Waldvogel, R. et al., Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-l,3-glucanase during tobacco seed germination, Plant Mol. Biol., 1998, 38: 785.

    Article  CAS  Google Scholar 

  32. Sasaki, T., Song, J., Koga-Ban, Y. et al., Toward cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library, Plant J., 1994, 6: 615.

    Article  PubMed  CAS  Google Scholar 

  33. Weigel, D., The APETALA2 domain is related to a novel type of DNA binding domain, Plant Cell, 1995, 388.

  34. Moose, S. P., Sisco, P. H., Glossy l5, an APETALA2-like gene from maize that regulates leaf epidermal cell identity, Genes & Development, 1996, 10: 3018.

    Article  CAS  Google Scholar 

  35. Buttner, M., Singh, K. B.,Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein, Proc. Natl. Acad. Sci. USA, 1997, 94:5961.

    Article  PubMed  CAS  Google Scholar 

  36. Xu, P., Narasimhan, M. L., Samson, T. et al., A nitrilase-like protein interacts with GCC box DNA-binding proteins involved in ethylene and defense responses, Plant Physiol., 1998, 118: 867.

    Article  PubMed  CAS  Google Scholar 

  37. Hao, D. Y., Ohmetakagi, M., Sarai, A unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant, J. Biol. Chem., 1998, 273: 2657.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Liu.

About this article

Cite this article

Liu, Q., Zhao, N., Yamaguch-Shinozaki, K. et al. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chin. Sci. Bull. 45, 970–975 (2000). https://doi.org/10.1007/BF02884972

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02884972

Keywords

Navigation