Science in China Series A: Mathematics

, Volume 48, Supplement 1, pp 156–167

Degeneracy of holomorphic curves in surfaces


DOI: 10.1007/BF02884702

Cite this article as:
Liu, Y. & Ru, M. Sci. China Ser. A-Math. (2005) 48: 156. doi:10.1007/BF02884702


LetX be a complex projective algebraic manifold of dimension 2 and let D1, ..., Du be distinct irreducible divisors onX such that no three of them share a common point. Let\(f:{\mathbb{C}} \to X\backslash ( \cup _{1 \leqslant i \leqslant u} D_i )\) be a holomorphic map. Assume thatu ⩾ 4 and that there exist positive integers n1, ... ,nu,c such that ninJDi.Dj) =c for all pairsi,j. Thenf is algebraically degenerate, i.e. its image is contained in an algebraic curve onX.


degeneracy of holomorphic curvesNevanlinna theorycomplex projective surfacesecond main theorem

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HoustonHoustonUSA