[1]

A. Aleksandrov,

*Inner functions and related spaces of pseudocontinuable functions*, Zap. Nauchn. Sem. POMI

**170** (1989), 7–33.

MATH[2]

A. Aleksandrov,*On the existence of angular boundary values for pseudocontinuable functions*, Zap. Nauchn. Sem. POMI**222** (1995), 5–17.

[3]

A. Aleksandrov,*Isometric embeddings of coinvariant subspaces of the shift operator*, Zap. Nauchn. Sem. POMI**232** (1996), 5–16.

[4]

N.-E. Benamara and N. Nikolski,

*Resolvent tests for similarity to a normal operator*, Proc. London Math. Soc.

**78** (1999), 585–626.

MATHCrossRefMathSciNet[5]

D. L. Burkholder,

*Boundary value problems and sharp inequalities for martingale transforms*, Ann. Probab.

**12** (1984), 647–802.

MATHCrossRefMathSciNet[6]

D. L. Burkholder,

*Explorations in martingale theory and its applications*, in

*Ecole d’Eté de Probabilité de Saint-Flour XIX-1989*, Lecture Notes in Mathematics

**1464**, Springer, Berlin, 1991, pp. 1–66.

CrossRef[7]

M. Christ,

*A T(b) theorem with remarks on analytic capacity and the Cauchy integral*, Colloq. Math.

**60/61** (1990), 601–628.

MathSciNet[8]

D. Clark,

*One dimensional perturbations of restricted shift*, J. Analyse Math.

**25** (1972), 169–191.

MATHMathSciNetCrossRef[9]

W. Cohn,

*Carleson measures for functions orthogonal to invariant subspaces*. Pacific J. Math.

**103** (1982), 347–364.

MATHMathSciNet[10]

W. Cohn,

*Carleson measures and operators on star-invariant subspaces*, J. Operator Theory

**15** (1986), 181–202.

MATHMathSciNet[11]

M. Cotlar and C. Sadosky,*On the Helson-Szegö theorem and a related class of modified Toeplitz kernels*, in*Harmonic Analysis in Euclidean Spaces* (G. Weiss and S. Wainger, eds.), Proc. Sympos. Pure Math.**35** (1979), 383–407.

[12]

O. David,

*Completely unrectifiable 1-sets on the plane have zero analytic capacity*, Rev. Mat. Iberoamericana

**14** (1998), 369–479.

MATHMathSciNet[13]

G. David,*Analytic capacity, Cauchy kernel, Menger curvature, and rectifiability*, in*Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996)*, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999, pp. 183–197.

[14]

G. David,

*Analytic capacity, Calderón-Zygmund operators, and rectifiability*, Publ. Mat.

**43** (1999), 3–25.

MATHMathSciNet[15]

G. David and P. Mattila,

*Removable sets for Lipschitz harmonic functions in the plane*, Rev. Mat. Iberoamericana

**16** (2000), 137–215.

MATHMathSciNet[16]

V. Kapustin,

*Spectral analysis of almost unitary operators*, Algebra i Analiz

**13** (2001), No. 5, 44–68.

MathSciNet[17]

T. Kato,

*Perturbation Theory for Linear Operators*, Springer-Verlag, Berlin, 1980.

MATH[18]

N. Makarov and V. Vasyunin,*A model for noncontractions and stability of the continuous spectrum*, in*Complex Analysis and Spectral Theory (Leningrad, 1979/1980)*, Lecture Notes in Math.**864**, Springer, Berlin-New York, 1981, pp. 365–412.

[19]

F. Nazarov,*A solution to a problem of D. Sarason*, preprint.

[20]

F. Nazarov and S. Treil,

*The hunt for a Bellman function: applications to estimates of singular integral operators and to other classical problems in harmonic analysis*, St. Petersburg Math. J.

**8** (1996), 32–162.

MATHMathSciNet[21]

F. Nazarov and A. Volberg,*Linear growth of resolvent and perturbations on certain thin spectrum*, preprint.

[22]

F. Nazarov, S. Treil and A. Volberg,*Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces*, Internat. Math. Res. Notices (1997), No. 15, 703–726.

[23]

F. Nazarov, S. Treil and A. Volberg,*Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces*, Internat. Math. Res. Notices (1998), No. 9, 463–487.

[24]

F. Nazarov, S. Treil and A. Volberg,

*The Bellman function and two-weight inequality for Haar multipliers*, J. Amer. Math. Soc.

**12** (1999), 909–928.

MATHCrossRefMathSciNet[25]

F. Nazarov, S. Treil and A. Volberg,*Tb-theorem on non-homogeneous spaces*, preprint, 1999, pp. 1–84. See http://www.math.msu.edu/volberg. To appear in Acta Math.

[26]

F. Nazarov, S. Treil and A. Volberg,

*Accretive system Tb-theorems on non-homogeneous spaces*, Duke Math. J.

**113** (2002), 237–290. See http://www.math.msu.edu/volberg.

CrossRefMathSciNet[27]

F. Nazarov, S. Treil and A. Volberg,

*Bellman function in stochastic optimal control and harmonic analysis, preprint, to appear in Proc. Internat. Workshop on Operator Theory, Bordeaux, 2000*; Oper. Theory Adv. Appl.

**129** (2001), 393–424.

MathSciNet[28]

F. Nazarov, S. Treil and A. Volberg,*Two-weight Hilbert transform and related Calderón-Zygmund operators*, manuscript.

[29]

N. Nikolski,*Treatise on the Shift Operator*, Springer-Verlag, Berlin, 1986.

[30]

N. Nikolski and S. Treil,*Linear resolvent growth of rank one perturbation of a unitary operator does not imply its similarity to a normal operator*, J. Analyse Math.**87** (2002), this volume.

[31]

A. Poltoratski,

*The boundary behavior of pseudocontinuable functions*, St. Petersburg Math. J.

**5** (1994), 389–406.

MathSciNet[32]

A. Poltoratski,

*On the distributions of boundary values of Cauchy integrals*, Proc. Amer. Math. Soc.

**124** (1996), 2455–2463.

MATHCrossRefMathSciNet[33]

A. Poltoratski,

*The Krein spectral shift and rank one perturbation of spectra*, St. Petersburg Math. J.

**10** (1999), 143–183.

MathSciNet[34]

A. Poltoratski,

*Equivalence up to a rank one perturbation*, Pacific J. Math.

**194** (2000), 175–188.

MATHMathSciNetCrossRef[35]

A. Poltoratski,*Maximal properties of the normalized Cauchy transform*, preprint.

[36]

D. Sarason,

*Nearly invariant subspaces of the backward shift*, Oper. Theory Adv. Appl.

**35** (1988), 481–493.

MathSciNet[37]

B. Simon,*Spectral analysis of rank one perturbations and applications*, in*Mathematical Quantum Theory. II. Schrödinger operators (Vancouver, BC, 1993)*, CRM Proc. Lecture Notes 8, Amer. Math. Soc, Providence, RI, 1995, pp. 109–149.

[38]

B. Simon and Th. Wolff,

*Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians*, Comm. Pure Appl. Math.

**39** (1986), 75–90.

MATHCrossRefMathSciNet[39]

E. Stein,

*Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals*, with the assistance of Timothy S. Murphy, Princeton Univ. Press, Princeton, 1993.

MATH[40]

X. Tolsa,*Curvature of measures, Cauchy singular integral, and analytic capacity*, Thesis, Dept. Math., Univ. Auton. de Barcelona, 1998.

[41]

X. Tolsa,*BMO, H1* and Calderón-Zygmund operators for non-doubling measures, preprint Chalmers Inst. of Technology, 1999, pp. 1–54.

[42]

X. Tolsa,

*L*
^{2}-

*boundedness of the Cauchy integral operator for continuous measures*, Duke Math. J.

**98** (1999), 269–304.

MATHCrossRefMathSciNet[43]

X. Tolsa,

*Collar’s inequality and the existence of principal values for the Cauchy integral without doubling condition*, J. Reine Angew Math.

**502** (1998), 199–235.

MATHMathSciNet[44]

S. Treil and A. Volberg,*Embedding theorems for invariant subspaces of the inverse shift operator* (Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI)**149** (1986), 186–187; translation in J. Soviet Math.**42** (1988), 1562–1572.

[45]

A. Volberg,

*Thin and thick families of rational fractions*, in

*Complex Analysis and Spectral Theory (Leningrad, 1979/1980)*, Lecture Notes in Math.

**864**, Springer, Berlin-New York, 1981, pp. 440–480.

CrossRef