Israel Journal of Mathematics

, Volume 82, Issue 1, pp 281–297

On extensions of the Baer-Suzuki Theorem

Article

DOI: 10.1007/BF02808114

Cite this article as:
Guralnick, R.M. & Robinson, G.R. Israel J. Math. (1993) 82: 281. doi:10.1007/BF02808114
  • 69 Views

Abstract

We find a necessary and sufficient condition for an element of prime order in a finite group to be in a normalp-subgroup. This generalizes the Baer-Suzuki Theorem. Our proof depends on a result about elements of prime order contained in a unique maximal subgroup containing a result of Wielandt. We discuss various consequences, linear and algebraic group versions of the result.

Copyright information

© Hebrew University 1993

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Southern CalforniaLos AngelesUSA
  2. 2.Department of MathematicsUniversity of FloridaGainesvilleUSA