Israel Journal of Mathematics

, Volume 82, Issue 1, pp 141–156

TheK-admissibility of 2A6 and 2A7

  • Walter Feit

DOI: 10.1007/BF02808111

Cite this article as:
Feit, W. Israel J. Math. (1993) 82: 141. doi:10.1007/BF02808111


LetK be a field and letG be a finite group.G isK-admissible if there exists a Galois extensionL ofK withG=Gal(L/K) such thatL is a maximal subfield of a centralK-division algebra. This paper contains a characterization of those number fields which areQ16-admissible. This is the same class of number fields which are 2A6=SL(2, 9) and 2A7 admissible.

Copyright information

© Hebrew University 1993

Authors and Affiliations

  • Walter Feit
    • 1
  1. 1.Department of MathematicsYale UniversityNew HavenUSA