[Aiz] M. Aizenman,*Continuum limits for critical percolation and other stochastic geometric models*, Preprint. http://xxx.lanl.gov/abs/math-ph/9806004.

[ABNW] M. Aizenman, A. Burchard, C. M. Newman and D. B. Wilson,*Scaling limits for minimal and random spanning trees in two dimensions*, Preprint. http://xxx.lanl.gov/abs/math/9809145.

[ADA] M. Aizenman, B. Duplantier and A. Aharony,*Path crossing exponents and the external perimeter in 2D percolation*, Preprint. http://xxx.lanl.gov/abs/cond-mat/9901018.

[Ald90] D. J. Aldous,

*The random walk construction of uniform spanning trees and uniform labelled trees*, SIAM Journal on Discrete Mathematics

**3** (1990), 450–465.

MATHCrossRefMathSciNet[Ben] I. Benjamini,*Large scale degrees and the number of spanning clusters for the uniform spanning tree*, in*Perplexing Probability Problems: Papers in Honor of Harry Kesten* (M. Bramson and R. Durrett, eds.), Boston, Birkhäuser, to appear.

[BLPS98] I. Benjamini, R. Lyons, Y. Peres and O. Schramm,*Uniform spanning forests*, Preprint. http://www.wisdom.weizmann.ac.il/≈schramm/papers/usf/.

[BJPP97] C. J. Bishop, P. W. Jones, R. Pemantle and Y. Peres,

*The dimension of the Brownian frontier is greater than 1*, Journal of Functional Analysis

**143** (1997), 309–336.

MATHCrossRefMathSciNet[Bow] B. H. Bowditch,*Treelike structures arising from continua and convergence groups*, Memoirs of the American Mathematical Society, to appear.

[Bro89] A. Broder,

*Generating random spanning trees*, in

*30th Annual Symposium on Foundations of Computer Science*, IEEE, Research Triangle Park, NC, 1989, pp. 442–447.

CrossRef[BP93] R. Burton and R. Pemantle,

*Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances*, The Annals of Probability

**21** (1993), 1329–1371.

MATHCrossRefMathSciNet[Car92] J. L. Cardy,

*Critical percolation in finite geometries*, Journal of Physics A

**25** (1992), L201-L206.

MATHCrossRefMathSciNet[DD88] B. Duplantier and F. David,

*Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice*, Journal of Statistical Physics

**51** (1988), 327–434.

MATHCrossRefMathSciNet[Dur83] P. L. Duren,

*Univalent Functions*, Springer-Verlag, New York, 1983.

MATH[Dur84] R. Durrett,

*Brownian Motion and Martingales in Analysis*, Wadsworth International Group, Belmont, California, 1984.

MATH[Dur91] R. Durrett,

*Probability*, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991.

MATH[EK86] S. N. Ethier and T. G. Kurtz,

*Markov Processes*, Wiley, New York, 1986.

MATH[Gri89] G. Grimmett,

*Percolation*, Springer-Verlag, New York, 1989.

MATH[Häg95] O. Häggström,

*Random-cluster measures and uniform spanning trees*, Stochastic Processes and their Applications

**59** (1995), 267–275.

MATHCrossRefMathSciNet[Itô61] K. Itô,*Lectures on Stochastic Processes*, Notes by K. M. Rao, Tata Institute of Fundamental Research, Bombay, 1961.

[Jan12] Janiszewski, Journal de l'Ecole Polytechnique**16** (1912), 76–170.

[Ken98a] R. Kenyon,*Conformal invariance of domino tiling*, Preprint. http://topo.math.u-psud.fr/≈kenyon/confinv.ps.Z.

[Ken98b] R. Kenyon,*The asymptotic determinant of the discrete laplacian*, Preprint. http://topo.math.u-psud.fr/≈kenyon/asymp.ps.Z.

[Ken99] R. Kenyon,*Long-range properties of spanning trees*, Preprint.

[Ken] R. Kenyon, in preparation.

[Kes87] H. Kesten,

*Hitting probabilities of random walks on ℤ*
_{d}, Stochastic Processes and their Applications

**25** (1987), 165–184.

MATHCrossRefMathSciNet[Kuf47] P. P. Kufarev,

*A remark on integrals of Löwner's equation*, Doklady Akademii Nauk SSSR (N.S.)

**57** (1947), 655–656.

MATHMathSciNet[LPSA94] R. Langlands, P. Pouliot and Y. Saint-Aubin,

*Conformal invariance in twodimensional percolation*, Bulletin of the American Mathematical Society (N.S.)

**30** (1994), 1–61.

MATHMathSciNet[Law93] G. F. Lawler,

*A discrete analogue of a theorem of Makarov*, Combinatorics, Probability and Computing

**2** (1993), 181–199.

MATHMathSciNetCrossRef[Law] G. F. Lawler,*Loop-erased random walk*, in*Perplexing Probability Problems: Papers in Honor of Harry Kesten* (M. Bramson and R. Durrett, eds.), Boston, Birkhäuser, to appear.

[Löw23] K. Löwner,

*Untersuchungen über schlichte konforme abbildungen des einheitskreises, I*, Mathematische Annalen

**89** (1923), 103–121.

CrossRefMathSciNetMATH[Lyo98] R. Lyons, A bird's-eye view of uniform spanning trees and forests, in*Microsurveys in Discrete Probability (Princeton, NJ, 1997)*, American Mathematical Society, Providence, RI, 1998, pp. 135–162.

[MR] D. E. Marshall and S. Rohde, in preparation.

[MMOT92] J. C. Mayer, L. K. Mohler, L. G. Oversteegen and E. D. Tymchatyn,

*Characterization of separable metric ℝ-trees*, Proceedings of the American Mathematical Society

**115** (1992), 257–264.

MATHCrossRefMathSciNet[MO90] J. C. Mayer and L. G. Oversteegen,

*A topological characterization of ℝ-trees*, Transactions of the American Mathematical Society

**320** (1990), 395–415.

MATHCrossRefMathSciNet[New92] M. H. A. Newman,

*Elements of the Topology of Plane Sets of Points*, second edition, Dover, New York, 1992.

MATH[Pem91] R. Pemantle,

*Choosing a spanning tree for the integer lattice uniformly*, The Annals of Probability

**19** (1991), 1559–1574.

MATHCrossRefMathSciNet[Pom66] C. Pommerenke,

*On the Loewner differential equation*, The Michigan Mathematical Journal

**13** (1966), 435–443.

MATHCrossRefMathSciNet[Rus78] L. Russo,

*A note on percolation*, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete

**43** (1978), 39–48.

MATHCrossRef[SD87] H. Saleur and B. Duplantier,

*Exact determination of the percolation hull exponent in two dimensions*, Physical Review Letters

**58** (1987), 2325–2328.

CrossRefMathSciNet[Sch] O. Schramm, in preparation.

[Sla94] G. Slade,

*Self-avoiding walks*, The Mathematical Intelligencer

**16** (1994), 29–35.

MATHMathSciNet[SW78] P. D. Seymour and D. J. A. Welsh,*Percolation probabilities on the square lattice*, in*Advances in Graph Theory (Cambridge Combinatorial Conference, Trinity College, Cambridge, 1977*), Annals of Discrete Mathematics**3** (1978), 227–245.

[TW98] B. Tóth and W. Werner,

*The true self-repelling motion*, Probability Theory and Related Fields

**111** (1998), 375–452.

MATHCrossRefMathSciNet[Wil96] D. B. Wilson,

*Generating random spanning trees more quickly than the cover time*, in

*Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996)*, ACM, New York, 1996, pp. 296–303.

CrossRef