[AS]

M. Abramowitz and I. Stegun,*A Handbook of Mathematical Functions*, Dover, New York, 1970.

[B1]

C. de Boor,

*The polynomials in the linear span of integer translates of a compactly supported function*, Constructive Approximation

**3** (1987), 199–208.

MATHCrossRefMathSciNet[B2]

C. de Boor,*Quasiinterpolants and approximation power of multivariate splines*, in*Computation of Curves and Surfaces* (M. Gasca and C.A. Micchelli, eds.), Dordrecht, Netherlands: Kluwer Academic Publishers, 1990, pp. 313–345.

[Bu]

M.D. Buhmann,

*Convergence of univariate quasi-interpolation using multiquadrics*, IMA J. Num. Anal.

**8** (1988), 365–384.

MATHCrossRefMathSciNet[BJ]

C. de Boor and R.Q. Jia,

*Controlled approximation and a characterization of the local approximation order*, Proc. Am. Math. Soc.

**95** (1985), 547–553.

MATHCrossRef[BR]

C. de Boor and A. Ron,

*On multivariate polynomial interpolation*, Constructive Approximation

**6** (1990), 287–302.

MATHCrossRefMathSciNet[DL]

N. Dyn and D. Levin,*Bell shaped basis functions for surface fitting*, in*Approximation Theory and Applications* (Z. Ziegler, ed.), Academic Press, New York, 1981, pp. 113–129.

[DLR]

N. Dyn, D. Levin and S. Rippa,

*Numerical procedures for global surface fitting of scattered data by radial functions*, SIAM J. Sci. Stat. Computing

**7** (1986), 639–659.

MATHCrossRefMathSciNet[DM1]

W. Dahmen and C.A. Micchelli,

*Translates of multivariate splines*, Linear Algebra and Appl.

**52/3** (1983), 217–234.

MathSciNet[DM2]

W. Dahmen and C.A. Micchelli,

*On the approximation order from certain multivariate spline spaces*, J. Austral. Math. Soc. Ser. B

**26** (1984), 233–246.

MATHMathSciNetCrossRef[GM]

M. Gasca and J.I. Maeztu,

*On Lagrange and Hermite interpolation in* ℝ

^{n}, Num. Math.

**39** (1982), 1–14.

MATHCrossRefMathSciNet[GS]

I.M. Gelfand and G.E. Shilov,*Generalized Functions*, Vol. 1, Academic Press, New York, 1964.

[H]

L. Hörmander,*The Analysis of Linear Partial Differential Operators*, Volume 1, Springer-Verlag, Berlin, 1983.

[J1]

I.R.H. Jackson,

*An order of convergence for some radial basis functions*, IMA J. Numer. Anal.

**9** (1989), 567–587.

MATHCrossRefMathSciNet[J2]

I.R.H. Jackson,*Radial Basis Function Methods for Multivariable Approximation*, Ph.D. Thesis, Cambridge University, 1988.

[R1]

C. Rabut,*Polyharmonic cardinal B-splines, Part A: Elementary B-splines*, preprint, 1989.

[R2]

C. Rabut,*Polyharmonic cardinal B-splines, Part B: Quasi-interpolating B-splines*, preprint, 1989.

[S]

I.J. Schoenberg,

*Contributions to the problem of approximation of equidistant data by analytic functions*, Quart. Appl. Math.

**4** (1946), 45–99 and 112–141.

MathSciNet[SF]

G. Strang and G. Fix,*A Fourier analysis of the finite element variational method*, in*Constructive Aspects of Functional Analysis* (G. Geymonet, ed.), 1973, pp. 793–840.

[SW]

E.M. Stein and G. Weiss,*Introduction to Fourier Analysis on Euclidean Spaces*, Princeton University Press, 1971.